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Abstract

Probabilistic graphical models (PGMs) play a major role in much of the modern
research in reasoning with uncertainty, decision analysis, planning, pattern recogni-
tion, and many other areas. Several types of PGMs have been proposed in the last
two decades. However, there are some problems for which none of these types are
appropriate.
For example, none of the types of PGMs proposed has been widely adopted for rep-
resenting solving asymmetric decision problems. Decision analysis networks (DANs)
have been recently proposed by our research group but they needed efficient eval-
uation algorithms in order to be applicable to real-world problems. In this thesis
we have proposed a new algorithm that evaluates DANs by recursively decomposing
them into a set of symmetric DANs, which can then be evaluated with standard
algorithms, such as variable elimination or arc reversal. The efficiency of this algo-
rithm matches or even improves that of existing algorithms for other asymmetric
representations.
Similarly, existing types of PGMs were not apt as dynamic modeling methods for
cost-effectiveness analysis (CEA). The existing dynamic PGMs are burdened by
the complexity of their evaluation and can only solve unicriterion problems. Only
Markov processes with atemporal decisions (MPADs), a more restricted type of
dynamic PGMs also proposed by our research group, are suitable to build complex
dynamic models to perform CEA. I have developed new types of potentials and new
sensitivity analysis algorithms, with which I have been able to replicate as MPADs
several models proposed in the literature and to build two new models for CEA: one
for malignant pleural effusion and another one for mammography screening.
Finally, with the help of an expert, we have built a decision-support system for
cochlear implant programming (i.e., parameter tuning) based on PGMs. In this
thesis we also describe tuning networks, a new type of PGM we developed because
existing PGMs were not suitable to model the behavior of systems with a high
number of tunable parameters. This decision-support system is now routinely used
at a hearing clinic in Antwerp (Belgium) to assist audiologists in the programming
of cochlear implants.
All the contributions to PGMs described in this thesis have been implemented in
OpenMarkov, an open-source software tool developed at the UNED, and are publicly
available.
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Nomenclature

BN Bayesian network

CEA Cost-effectiveness analysis

CEAC Cost-effectiveness acceptability curve

CI Cochlear implant

DAG Directed acyclic graph
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1. Introduction

All models are wrong, but some are useful.

George E. P. Box

1.1. Motivation

Probabilistic graphical models (PGMs) have had a significant impact on almost all
aspects of artificial intelligence. Soon after their inception in the early 1980s (Howard
and Matheson, 1984; Pearl, 1988), they rose to prominence and they now lead much
of the modern work in reasoning with uncertainty, decision analysis, planning, pat-
tern recognition, and many other research areas. PGMs have proved that intuitive,
qualitative models capturing the probabilistic and informational dependence can
help in the construction, understanding, and solution of complex quantitative infer-
ence, learning, and decision problems.

Several types of PGMs have been proposed in the literature: Bayesian networks
(BNs) (Pearl, 1988), influence diagrams (IDs) (Howard and Matheson, 1984), dy-
namic BNs (Murphy, 2002), dynamic IDs (Hazen, 2004), limited-memory IDs (LIM-
IDs) (Lauritzen and Nilsson, 2001), dynamic LIMIDs (Díez and van Gerven, 2011),
factored Markov decision processes (MDPs) (Boutilier et al., 1995) and partially
observable MDPs (POMDPs) (Åström, 1965). However, there are some problems
for which none of these types of models are appropriate, especially in the field of
medicine.

For example, no type of PGM has received wide acceptance to solve asymmetric
decision problems, i.e., problems where a total order in the sequence of information
is not established or where some variables only make sense only in certain scenarios.
Decision analysis networks (DANs) (Díez et al., 2012) had been recently proposed,
but they needed efficient evaluation algorithms in order to be accepted by the com-
munity.

On the other hand, dynamic PGMs are not used to build dynamic models to perform
cost-effectiveness analysis (CEA), because the complexity of most of the algorithms
for MDPs, POMDPs, and DLIMIDs grows exponentially with the number of cycles
and because they are limited to solve unicriterion problems. For this reason we
proposed a new type of PGM called Markov Processes with Atemporal Decisions
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(MPAD), a more restricted type of dynamic PGM that are suitable to build complex
dynamic models to perform CEA.
Finally, during the construction of a decision-support system for parameter tuning
(also called programming or fitting) of cochlear implants, we realized that general
purpose decision analysis PGMs were not suitable to model the behavior of systems
with a high number of adjustable parameters. The enormous number of possible
adjustments makes IDs unsuitable for this task. For this reason, we developed a
new type of PGM, called tuning networks.
This research has followed the usual approach at the Research Center for Intelligent
Decision-Support Systems (CISIAD) of the UNED: the main contributions of this
thesis have been motivated by concrete medical problems, but the models, the al-
gorithms, and the software tools we have developed can be applied to many other
medical problems and even to other fields. These contributions have been imple-
mented and are now publicly available in the open-source program OpenMarkov1, a
software for the construction and evaluation of PGMs developed at the CISIAD.

1.2. Objectives

The general objective of this thesis was to contribute to the development of new
types of PGMs and to apply them to solve several medical problems. I have divided
this general objective into three more specific objectives:

• Our first objective was to implement the conversion of DANs into decision
trees, proposed by Díez et al. (2012). Decision trees have several disadvantages,
mainly that their size grows exponentially and that they cannot represent
conditional independencies. However, they are still the most usual decision
analysis tool and can be very useful to explain the decision process in small
problems (Lacave et al., 2007). Nevertheless, this conversion is extremely
inefficient. For this reason, a more relevant objective was to develop efficient
algorithms for DANs, implement them in OpenMarkov, and evaluate them.

• The second objective was to perform cost-effectiveness analyses for several
medical problems using MPADs. A necessary sub-goal was to complete and
extend the functionalities to perform CEA with MPADs in OpenMarkov. An-
other sub-goal was to reproduce with MPADs some of the models published
in the literature. The objective of building new MPADs for CEA was con-
creted in two particular problems: analyzing the cost-effectiveness of different
frequencies for mamography and that of two treatments for malignant pleural
effusion.

• The third goal was to build a decision-support system for fitting cochlear
implants. This objective led to the emergence of new

1www.openmarkov.com
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1.3 Methodology

1.3. Methodology

1.3.1. Algorithms for DANs

The development of DANs had begun at the CISIAD, before the start of my doc-
toral research. As a matter of fact, I started working on them after they were first
presented by Díez et al. (2012) at the Sixth Workshop on Probabilistic Graphical
Models, in Granada (Spain). I was first assigned the task of designing and imple-
menting the conversion of DANs into equivalent decision trees in OpenMarkov, from
the instructions in (Díez et al., 2012). This conversion was meant to serve as a
definition of the syntax of DANs rather than as an evaluation algorithm, for the
well known inefficiency of the decision tree evaluation algorithm (Raiffa, 1968). As
the first step, I got acquainted with the literature on the representation of asym-
metric decision problems. During the implementation of the conversion algorithm,
we found a few loose ends in the definition of DANs. After discussing these with
the authors of the original proposal, some of the features of DANs changed and so
did the conversion algorithm.
The main objective was to develop an algorithm that would match the efficiency of
the algorithms proposed in the literature for other asymmetric decision represen-
tations. After analyzing these other algorithms, I designed a new one for DANs.
The new algorithm, which consisted in a recursive decomposition of the original
DAN into a set of symmetric DANs, was evaluated on a wide range of problems
described in the literature—such as the n-test problem for different values of n. We
also compared its efficiency with that of another algorithm for DANs proposed and
implemented by Prof.Manuel Luque, as explained in Section 3.4.

1.3.2. Cost-effectiveness analysis with MPADs

MPADs had also been under development within the CISIAD previous to the begin-
ning my doctoral research, and a model had been built to model the cost-effectiveness
of the human papilloma virus (HPV) vaccine. I took over the development of
MPADs in OpenMarkov and completed the implementation of algorithms for cost-
effectiveness analysis and reimplemented sensitivity analysis almost from scratch.
During my three-month stay at the Centre for Health Economics of the University
of York in 2013, funded by a PhD scholarship awarded by UNED, I implemented as
MPADs several models published in the literature (Chancellor et al., 1997; Briggs
et al., 2004; Ryan et al., 2008) based on their Excel and R implementations. Those
models required new types of potentials, such as the Weibull hazard potential, which
were not yet available in OpenMarkov, as well as the extension of some of the existing
algorithms, for example to be able to do inference with numeric variables in certain
scenarios. I collaborated with other members of the CISIAD and of the University
of York on a paper that describes the MPADs and will be sent the Medical Decision
Making journal.

15
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I then built MPADs to perform cost-effectiveness analyses of two medical problems in
collaboration with two master students of the Modular Program on Tools for Health
Research and Management of the UNED. Dr. María José Roca, a medical specialist
in thoracic surgery at the Hospital Universitario Virgen de la Arrixaca in Murcia
and associate professor at the Department of Thoracic Surgery at the University of
Murcia Medical School, was interested in analyzing the cost-effectiveness of PleurX®
compared to talc pleurodesis for the treatment of malignant pleural effusion. Given
that the life expectancy of those patients is short, we initially intended to build an
atemporal model; however, we soon realized that it would be more appropriate to
build a Markov model with a short cycle length (one week).
We first conducted a literature review aimed at covering all the studies published on
the cost and effectiveness of the alternative treatments for malignant pleural effusion.
I then built the MPAD with the assistance of the expert: we identified the variables
that needed to be in the model and drew causal links amongst them. Finally I
encoded the conditional probability potentials and the utility functions. We took
most of the model parameters (probabilities and utilities) from the literature, but
others were estimated by the expert. I then performed the cost-effectiveness analysis
with OpenMarkov, including one-way sensitivity analysis for the parameters having
a higher variability in the literature. Finally, we wrote a paper describing the model
and the results of the CEA, which we intend to submit to the Medical Decision
Making journal after the paper on MPADs. The collaboration with the expert was
carried out with regular meetings remotely (through Skype and TeamViewer).
Similarly, Inés Vázquez wanted to conduct an analysis on the cost-effectiveness of
mammography in Spain, considering different frequencies, age ranges, and risk fac-
tors. She conducted a literature review. We started to build the MPAD based on
the model built by Schousboe et al. (2011). That model was based on data from
the Surveillance, Epidemiology, and End Results (SEER) database, which contains
epidemiological information about cancer in the USA. Even though that model is
described with great detail in the supplement of their paper, I had to obtain some
transition probabilities from the SEER database using their statistical software,
SEER*Stat. We also contacted Dr. Shousboe to discuss with him some counter-
intuitive results of his model and ours.
We then tried to replace the parameters calculated from the SEER database with
others calculated from Spanish data. The problem is that the model of Schousboe
et al., which we had reproduced approximately, was not causal but observational,
and therefore we could not use the available Spanish data, as they were not of the
same nature as those in the SEER database.

1.3.3. Decision-support system for cochlear implant fitting

When CISIAD joined the Opti-FOX project, funded by EU 7th Framework Pro-
gramme, I became involved in the development of a decision-support system for

16



1.4 A brief note on notation

cochlear implant fitting in collaboration with experts at the Eargroup, a hearing
clinic in Antwerp (Belgium). I first conducted a literature review on cochlear im-
plants and previous applications of artificial intelligence to the problem of cochlear
implant fitting, which is which is summarized in Section 7.2.2. We then proceeded
to the construction of a probabilistic graphical model to model the behavior of
cochlear implants with assistance of the experts . We had regular meetings with
them, most of the times remotely (through Skype) but we also traveled to Antwerp
regularly for face to face meetings. In one of them we felt the need for a new type
of canonical model (Díez and Druzdzel, 2006), which we called the tuning model,
and a new type of PGM, which we called tuning networks. Due to the size of the
resulting network and its high degree of connectivity, exact inference algorithms
were inapplicable because they soon ran out of memory. For this reason, I imple-
mented a well-known stochastic algorithm for Bayesian networks, called likelihood
weighting (Fung and Chang, 1990; Shachter and Peot, 1990), and extended it to
PGMs with utility nodes. During my three month research stay at the Machine
Intelligence group of the University of Aalborg in 2012, I designed and implemented
object-oriented probabilistic networks as an extension of object-oriented Bayesian
networks (Koller and Pfeffer, 1997; Bangsø and Wuillemin, 2000) to models with
utility and decision nodes. We evaluated the model mainly testing it with cases
stored in the clinical database. The expert evaluated the quality of the output of
the model and we compared it with that of a previous approach.
The collaboration with the Eargroup continued after the end of the Opti-FOX
project with a new grant from the Marie Curie Action “Industry-Academia Partner-
ships and Pathways” program (FP7-PEOPLE-2012-IAPP) funded by the European
Union. Since July 2013, I have been collaborating with the ENT clinician Dr. Paul
Govaerts in the further development of the decision-support system. This time we
changed our approach to combine the physical model published in Vaerenberg et al.
(2014b) with probabilistic graphical models. The new system has been evaluated in
several patients, achieving generally good results.

1.4. A brief note on notation

The following notation rules are observed throughout this dissertation:
• Variables are represented by an italic capital letter, such as X, sometimes

followed by a subscript, e.g., X1.
• Values taken by variables are represented by an italic lower case letter. For

example, xi is a value of Xi.
• Sets of variables {X1, ..., Xn} are be represented by a bold capital letter, e.g.,

X.
• Configurations of X, where each variableXi takes on a value xi, are represented

by a lower case bold letter, such as x.
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1.5. Organization of the thesis

The first part of this thesis, Fundamentals, is completed with Chapter 2, which de-
scribes the state of the art of PGMs and cost-effectiveness analysis.. Part II describes
three new types of PGMs: Chapter 3 introduces decision analysis networks (DANs)
and the algorithms for evaluating them, Chapter 4 presents Markov processes with
atemporal decisions (MPADs) and their application to cost-effectiveness analysis in
medicine, and Chapter 5 defines tuning networks. Part III describes the applications
of these new types of PGMs to particular medical problems: Chapter 6 includes two
cost-effectiveness analyses performed using MPADs, one for malignant pleural effu-
sion and the other for mammography, and Chapter 7 describes the decision-support
system for fitting cochlear implants. Finally, Chapter 8 summarizes the conclusions
and proposes some lines of future work.
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2. State of the art

2.1. An introduction to probabilistic graphical models
Probabilistic graphical models (PGMs) are models that use a graph-based represen-
tation for compactly encoding a complex joint probability distribution over a set of
variables.

2.1.1. Basic definitions

A graph G = (V,E) consists of a set of nodes V and a set of edges E. An edge is a
binary relation between two nodes (X, Y ), where X, Y ∈ V and X 6= Y . And edge
is directed if X and Y are ordered in (X, Y ) and usually represented as X → Y ; if
an edge is not directed it is said to be undirected. We will refer to directed edges
as arcs. If every edge in E is directed, then G is a directed graph, whereas if every
edge in E is undirected, then G is an undirected graph.
A path from node X to node Y in a graph G = (V,E) is a sequence {X0, X1, ..., Xn}
of distinct nodes such that (Xi−1, Xi) is an edge in E for each i such that 1 ≤ i ≤ n,
X = X0, and Y = Xn. The path is directed if all edges are directed. A graph is said
to be a tree if each pair of distinct nodes is connected by exactly one path.
A cycle is a path where X0 = Xn, and a directed cycle is a directed path with
X0 = Xn. A directed graph with no directed cycles is said to be a directed acyclic
graph (DAG).
Given an edge (X, Y ) from X to Y , the node X is said to be a parent of Y , Y a child
of X. The set of parents of a node Y is denoted by Pa(Y), and the set of children
for a node X is denoted by Ch(X). The nodes from which there exists a directed
path to X are named the ancestors of X. Similarly, the nodes to which there exists
a directed path from X are the descendants of X.

2.1.2. Bayesian networks

A Bayesian network (BN) (Pearl, 1988) BN = (G,P ) consists of a DAG G =
(V,E), in which each node X ∈ V represents a chance variable, and a probability
distribution over V, P(V), which can be factored as:

P (v) =
∏

X∈V
P (x | pa(X)), (2.1)
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Figure 2.1.: A Bayesian network for the differential diagnosis of two hypothetical
diseases.

where pa(X) denotes a configuration of the parents of X.
Since there is a one to one relation between variables and nodes in a BN, we will
use the terms node and variable indifferently.
We will assume in this thesis that all the variables in a BN are discrete, which means
each variable X ∈ V can only take a finite set of mutually exclusive values; this set
is called the domain of a variable X and is denoted by dom(X) = (x1, x2, ..., xn).
The quantitative information of a BN is given by assigning a conditional proba-
bility distribution P (X | Pa(X)) to each node X ∈ V. A conditional probability
distribution defines a conditional probability for each value x ∈ dom(X) and each
configuration pa(X) of its parents. A potential is a real-valued function defined over
a set of variables. The conditional probability distribution φ = P (X | Pa(X)) is
a particular case of potential whose domain is dom(φ) = {X}∪ Pa(X). Figure 2.1
shows an example of a Bayesian network.

2.1.3. Influence diagrams

An influence diagram (ID) (Howard and Matheson, 1984) is a generalization of a BN
used to model and solve decision problems. An ID consists of a DAG G = (V,E),
where the set V has three types of nodes: chance nodes VC , decision nodes VD, and
utility nodes VU . Chance nodes, drawn as circles, represent events which are not
under the direct control of the decision maker. Decision nodes, drawn as rectangles,
correspond to actions under the direct control of the decision maker. Utility nodes,
drawn as diamonds, represent the expected benefit or loss, or more generally, the
values of the decision maker. Utility nodes can not be parents of chance or decision
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Figure 2.2.: Influence diagram representing the decision over the test. For a disease
whose prevalence is 8% there exists a test with a sensitivity of 75% and a specificity
of 96%. The test has a cost of 0.2. There is a therapy for the disease, with an
effectiveness of 8 if the disease is present and 8 if it is absent. The effectiveness
of not applying the therapy is 3 if the disease is present but 10 if it is absent. Is
it worth doing the test? Put another way, the test will give us useful information
for deciding when to apply the therapy, but the question is whether this benefit
outweighs the cost of the test. In what cases should the therapy be applied?

nodes, but in an extension of IDs proposed by (Tatman and Shachter, 1990) they can
be parents of other utility nodes. Such nodes are called super value nodes (SVNs).
There are three types of arcs in an ID, depending on the type of node they point
at. Arcs pointing at chance nodes represent probabilistic dependency. Arcs pointing
at decision nodes, named informational arcs, represent availability of information;
i.e., if there is an arc from a node X to a decision node D then the state of X is
known before decision D is made. Finally, arcs pointing at utility nodes represent
functional dependency: arcs into an ordinary utility node indicate the domain of the
associated utility function. A utility function is a potential that defines the utility
of a node given its parents. Arcs into a SVN U indicate that the associated utility
function is a combination (generally a sum or a product) of the utility functions of
the parents of U .
Standard IDs require a directed path that connects all the decision nodes indicating
the order in which the decisions are made. In an ID with n decisions {D1, . . . , Dn},
this induces a partition of VC into n + 1 disjoint subsets, C0,C1, ...,Cn, where Ci

contains every chance variable C with an arc C → Di but no arc C → Dj to a
previous decision, j < i; i.e., Ci is the subset of chance variables known for Di but
unknown for previous decisions. This induces a partial order ≺ in VC ∪VD:

C0 ≺ {D0} ≺ C1 ≺ ... ≺ {Dn} ≺ Cn . (2.2)
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The variables known when making decision Dj are known as the informational
predecessors of Dj and denoted iPred(Dj). By assuming the no-forgetting hypoth-
esis, which states that the decision maker remembers all previous decisions and
observations, we have iPred(Di) ⊆ iPred(Dj) (for i ≤ j). In particular, iPred(Dj)
is the set of chance variables that occurs before Dj under ≺, i.e., iPred(Dj) =
C0 ∪ {D0} ∪C1 ∪ . . . ∪ {Di−1} ∪Ci.
The quantitative information defining an ID consists of a conditional probability
distribution p(C | Pa(C)) for each chance node C, and a utility function or potential
ψU(pa(U)) for each utility node. The potential of an ordinary utility node maps
each configuration of its parents onto a real number, whereas the potential of a SVN
defines a utility-combination function.
For each configuration vD of the decision variables in VD we have a joint probability
distribution defined over the set of random variables VC :

P (vC | vD) =
∏

X∈VC

P (x | pa(X)) , (2.3)

This equation represents the probability of configuration vC when the decision vari-
ables are set to the values vD.

2.1.3.1. Policies and strategies

A stochastic policy PD for a decision D is a probability distribution defined over D
and conditioned on the set of its informational predecessors: PD(d | iPred(D)). If
PD is degenerate (consisting only of ones and zeros) then we say that the policy is
deterministic. A deterministic policy δDi

assigns each of the configurations of the
informative predecessors with a value d of D.
A strategy ∆ is the set of policies for all the decisions in VD, {PD | D ∈ VD}. If all
the policies in the strategy ∆ are deterministic, then ∆ is said to be deterministic;
otherwise it is stochastic. The literature about IDs generally assumes that the
strategies are deterministic and so will we in this dissertation.
A strategy ∆ induces a joint probability distribution over VC ∪VD defined as:

P∆(vC ,vD) = P (vC | vD)
∏

D∈VD

PD(d | iPred(D))

=
∏

C∈VC

P (c | pa(C))
∏

D∈VD

PD(d | iPred(D)) . (2.4)

Let I be an ID, ∆ a strategy for I and r a configuration defined over a set of variables
R ⊆ VC∪VD such that P∆(r) 6= 0. The conditional probability distribution induced
by the strategy ∆ given the configuration r, defined over R′ = (VC ∪VD) \R, is

P∆(r′ | r) = P∆(r, r′)
P∆(r) . (2.5)

22



2.1 An introduction to probabilistic graphical models

Using this distribution P∆(r′ | r) we can compute the expected utility of nodeU
under the strategy ∆ given the configuration r as:

EUU(∆, r) =
∑
r′
P∆(r′ | r)ψU(r, r′). (2.6)

We define the expected utility of U under the strategy ∆ as EUU(∆) = EUU(∆,�),
where � is the empty configuration. We have that

EUU(∆) =
∑
vC

∑
vD

P∆(vC ,vD)ψU(vC ,vD). (2.7)

The expected utility of the strategy ∆, denoted by EU (∆), is the sum of the expected
utilities under the strategy ∆ of all the utility nodes in I having no descendants.

An optimal strategy is a strategy ∆opt that maximizes the expected utility:

∆opt = arg max
∆∈∆∗

EU (∆), (2.8)

where ∆∗ is the set of all the strategies for I.

The policies in an optimal strategy are said to be optimal policies. An optimal policy
δDi

is a function that maps each configuration of the variables in iPred(Di−1), onto
the value di of Di that maximizes the expression at the right of Di (in the case of a
tie, any maximizing value can be chosen arbitrarily):

δDi
(iPred(Di)) = arg max

di∈Di

∑
ci

max
di+1

. . .
∑
cn−1

max
dn

∑
cn

P (vC : vD)ψU0(vC ,vD) . (2.9)

The maximum expected utility (MEU ) is the expected utility of the optimal strategy.

MEU = EU (∆opt) = max
∆∈∆∗

EU (∆). (2.10)

The evaluation of an ID consists in finding the MEU and an optimal strategy,
composed by an optimal policy for each decision. It can be proved (Cowell et al.,
1999) that

MEU =
∑
c0

max
d0

. . .
∑
cn−1

max
dn−1

∑
cn

P (vC : vD)ψU0(vC ,vD). (2.11)

We can always find a deterministic optimal strategy for an ID and, in the case of
ties, there may even be more than one.
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2.1.4. Canonical models

The construction of probabilistic graphical models, such as Bayesian networks and
influence diagrams, requires the specification of many conditional probability dis-
tributions of the form P (y | x), where X = {X1, . . . , Xn} is the set of parents of a
node Y in the network—see Figure 2.3.
The set {Y } ∪X is called a family. When all the variables in a family are discrete,
P (y | x) can be expressed in the form of a conditional probability table (CPT), with
as many numerical parameters as the number of different combinations of the values
of the variables in the family. Therefore, the number of numerical parameters grows
exponentially with the number of parents. Usually, the numerical parameters are
estimated from databases or assessed by human experts and, for this reason, it is
usually difficult to build a CPT for a family having more than three or four parents.
One way of reducing the complexity of the elicitation of the numerical probabilities is
to rely on the so-called canonical models. The term “canonical” is used because such
models are elementary units used in the construction of more complicated models
(Pearl, 1988). Canonical models usually allow the definition of complex probability
distributions from a small number of parameters. Different canonical models may
coexist in any PGM. For instance, in causal Bayesian networks modeling real-world
domains, it is frequent to find a significant number of families that interact through
OR/MAX-models and a few who do it through AND-models, while the rest of the
families use regular CPTs.
Canonical models not only simplify the construction of probabilistic models (knowl-
edge engineering), but also save storage space and computation time (Díez and
Druzdzel, 2006) and they correspond to causal patterns that can be exploited to
generate user explanations (Lacave and Díez, 2002).

2.1.4.1. ICI models

A common type of canonical models are ICI models, which are based on the inde-
pendence of causal influence (ICI) assumption. This assumption implies that there
are no interactions among the causal mechanisms by which the parents Xi affect the

��
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X1 ��

��
Xn

@
@
@@R

�
�

��	

��
��

Y

· · ·

Figure 2.3.: A family consisting of a child node Y and its parents, X =
{X1, . . . , Xn}.
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value of the child Y . Noisy ICI models are defined by introducing n auxiliary vari-
ables {Z1, . . . , Zn}, as shown in Figure 2.4, such that Y is a deterministic function
of the Zis, y = f(z), and the value of each Zi depends probabilistically only on Xi,
as captured by the CPT P (zi | xi). The conditional probability P (y | x) is obtained
by marginalizing out the Zis:

P (y | x) =
∑

z
P (y | z) · P (z | x) , (2.12)

where

P (y | z) =
{

1 if y = f(z)
0 otherwise . (2.13)

Therefore,

P (y | x) =
∑

z|f(z)=y

P (z | x) . (2.14)
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Figure 2.4.: Auxiliary structure for the derivation of a noisy ICI model.

Given the graph in Figure 2.4, the ICI assumption implies the absence of links
Xi → Zj and Zi → Zi for all i 6= j, which means that

P (z | x) =
∏

i

P (zi | xi) (2.15)

and, consequently,

P (y | x) =
∑

z|f(z)=y

∏
i

P (zi | xi) . (2.16)
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Each parameter P (zi | xi) of an ICI model is associated with a particular link Xi →
Y , while each parameter P (y | x) in a CPT corresponds to a certain configuration
x of all the parents of Y , and cannot be associated to any particular link. This
property, stemming from the ICI assumption, entails two advantages from the point
of view of knowledge engineering. The first is a significant reduction in the number
of parameters required to specify a model, from O(exp(n)) in a general model to
O(n) in an ICI model. This can amount to a substantial reduction of the elicitation
effort. For example, a binary node with 10 binary parents will have a CPT consisting
of 211 = 2, 048 numerical parameters. Adding one more parent doubles this number
to 212 = 4, 096 parameters. In contrast, a noisy OR model would require only 10
and 11 parameters, respectively. The second advantage is that the parameters in
canonical models lend themselves to fairly intuitive interpretations, which facilitates
the task of eliciting them from human experts.
It is possible to define leaky ICI models (Díez and Druzdzel, 2006), which only differ
from their noisy counterparts in the addition of another auxiliary variable, ZL, which
accounts for the effect of variables not explicitly represented in the model.

26



2.2 Asymmetric decision problems

2.2. Asymmetric decision problems

2.2.1. Basic definitions

The term asymmetry in decision analysis stems from decision trees (DTs) (Raiffa
and Schlaifer, 1961), the first and probably the most widely used formalism in the
field, and it comprises two rather different features. In a DT, a path from the root
to a leaf is called a scenario. A decision problem is said to be symmetric if all
its possible DT representations are symmetric. For a DT to be symmetric, (1) the
number of scenarios must be equal to the Cartesian product of the state spaces of all
chance and decision variables, and (2) a decision tree representation of the problem
must exist such that the sequence of variables is the same in all scenarios (Bielza
et al., 2011). A decision problem is said to be asymmetric if it is not symmetric. In
order to distinguish between the two types of asymmetry, we say there is structural
asymmetry when the value taken on by a variable restricts the domain of other
variables, and that there is order asymmetry when several orderings of the decisions
and observations are possible (Jensen et al., 2006).

The n-test problem is a good example containing both order and structural asym-
metry. It can be stated as follows: a patient goes to the doctor showing some
symptoms and the doctor wants to know whether the patient has a certain disease
or not. The doctor has to decide which of the n available tests (each one with an
associated cost, specificity, and sensitivity) to perform and in which order. Each
test can be performed at most once and its result will be known immediately. The
diabetes problem Demirer and Shenoy (2006) is an instance of the n-test problem
with n = 2. It contains structural asymmetry because the information available (the
test results) depends on the decision made for each test, we will know its result only
if we decide to do a certain test. It also contains order asymmetry because different
orderings of the decisions lead to different information being available when making
the decisions.

2.2.2. Shortcomings of traditional representations

DTs have the advantage of almost absolute flexibility, but also have three drawbacks:
their size grows exponentially with the number of variables, they cannot represent
conditional independencies, and they require in general a preprocessing of the prob-
abilities (Howard and Matheson, 1984; Bielza et al., 2011); for example, medical
diagnosis problems are usually stated in terms of direct probabilities, namely the
prevalence of the diseases and the sensitivity and specificity of the tests, while DTs
are built with inverse probabilities, i.e., the positive and negative predictive values
of the tests. Even in cases with only a few chance variables, this preprocessing of
probabilities is a difficult task.
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After DTs, IDs (Section 2.1.3) are the most widely used formalism and have the
advantages of being very compact, easily representing conditional independence,
and using direct probabilities, but they are only appropriate to model symmetric
decision problems. Problems having only structural asymmetry can be symmetrized
by using two modeling tricks (Smith et al., 1993). The situation where a chance
variable X (e.g. the test result) has no sense for a value of parent variable Y
(e.g. the decision not to make a test), can be modeled by adding a dummy state
to X. For example, the test problem can be represented with an ID if the test
result has three values: positive, negative, and (the dummy state) not-performed.
The drawback of this trick is that it complicates the edition of the probability
tables. It also makes the evaluation less efficient, due to the enlarged probability
and utility tables, and complicates the interpretation of the results, because some
policies contain configurations that can never occur, such as (do not test, positive),
(do not test, negative), and (do test, not-performed). If a value d of decision D
cannot be made when parent node X takes value x, a dummy utility node U can be
added such that u(x, d) = −∞ and u(x′, d′) = 0 for the other configurations of X
and D.
Order asymmetry poses a much more serious difficulty to IDs. For example, if we
try to model the n-test problem with an ID, we need a n decision nodes for the
tests, {T1, . . . Tn}, each having n + 1 options; the extra option is “do no test”. We
then need n(n − 1)/2 dummy utility nodes to represent the restriction that tests
cannot be repeated, and that if the i− th decision is not to test, then all subsequent
test decisions are not to test. We also need n chance variables, {R1, . . . Rn}, for the
results of the tests. The meaning of Ri depends which test has been done in the i-th
place. Each Ri has m+1 possible states, where m is the maximum of the number of
outcomes of the tests; the extra state is “not performed”. If a test has fewer than m
outcomes, some of the states of the R’s are meaningless. Combining continuous and
discrete tests in the same model is impossible. Specifying the conditional probabilty
tables for the R’s is cumbersome. Additionally, the same table is repeated for every
Ri, which complicates the maintenance of the model and makes sensitivity analysis
virtually impossible. If a new test is added to the model, the domains of the all the
T ’s and the R’s must be revised, as well as the conditional probability tables of the
R’s and the tables of the dummy utility nodes; the effort is comparable to building
the new model from scratch.

2.2.3. Representations for asymmetric decision analysis

In practice, virtually all real-world problems are asymmetric, in particular all those
that involve the possibility of getting additional information at a cost. Several
formalisms have been proposed for representing and solving asymmetric decision
problems.
Smith, Holtzman, and Matheson (Smith et al., 1993) proposed an asymmetric rep-
resentation of IDs (SHM IDs) where the structure of the ID remained unchanged
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but the conditional distribution was represented by distribution trees, thus avoiding
the need for dummy states.
Asymmetric influence diagrams (AIDs) (Nielsen and Jensen, 2000) were presented
as IDs where the requirement for a total ordering of the decisions was relaxed and
where the structural asymmetry was encoded at the qualitative level. In practice,
the total order was required expect in the cases where the structure of the decision
problem rendered the decisions conditionally independent.
Sequential valuation networks (SVNs) (Demirer and Shenoy, 2006; Shenoy, 2000)
are a representation based on valuation networks (Shenoy, 1992) and sequential
decision diagrams (Covaliu and Oliver, 1995). Structural asymmetry is modeled in
SVNs by specifying conditions in labeled arcs but it is more difficult to model order
asymmetry, since all admissible decision and observation sequences of variables must
be established with arcs.
Unconstrained influence diagrams (UIDs) (Jensen and Vomlelová, 2002) were the
first extension of IDs where order asymmetry was efficiently represented: the order
of decisions and observations need only be partially specified, without the need for
information links. Unfortunately, they were as inappropriate to represent structural
asymmetry as conventional IDs.
Sequential influence diagrams (SIDs) (Jensen et al., 2006), combine the representa-
tion of structural asymmetry with labeled arcs of SVNs with the order asymmetry
representation of UIDs.
In summary, SHM IDs, AIDs, and SVNs were designed to represent structural asym-
metries, while UIDs were designed only for order asymmetry. SIDs were designed
for both; they consist of two overlapping graphs, one for the probability and utility
relations, and the other for modeling the sequence of decisions and observations,
which makes them difficult to build, to evaluate, to communicate to experts, and
to maintain—see also the comparisons in (Bielza et al., 2011; Bielza and Shenoy,
1999).
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2.3. Cost-effectiveness analysis

2.3.1. Basic concepts

Cost-effectiveness analysis (CEA) is the economic analysis that compares the relative
costs and outcomes (effects) derived from two or more possible course of actions.
In medicine, these actions are usually medical treatments, also called interventions.
The origin of CEA is in constrained optimization, as a means to maximize the
health-related function subject to a budget constraint, such as in a public health
care system. As such, CEA is a particular case of multicriteria decision making
with two objective functions: the health-related outcome (effectiveness), and the
economic cost, measured in monetary units. The impact of a treatment on health
is often measured in quality-adjusted life years (QALY) (Drummond et al., 2005),
which seeks to combine both length of life and health-related quality of life in a
single measure.
For each pair of interventions A and B, being CA and CB their respective costs, and
EA and EB their respective effectiveness: if CA < CB and EA > EB, then we say A
dominates B, as it is less costly and more effective; if on the other hand CB > CA

and EB > EA, we define the incremental cost-effectiveness ratio (ICER) of A and
B as:

ICER(A,B) = (CB − CA)
(EB − EA) .

An intervention A might be dominated by extended dominance if there are interven-
tions B and C such that ICER(A,C) > ICER(B,C).
The results of cost effectiveness analysis can be presented in a graph where the
horizontal axis represents effectiveness and the vertical axis represents cost. In this
graph, called the cost-effectiveness plane, each intervention is represented by a point
whose position is determined by its cost and effectiveness. The frontier of efficiency
is formed by those interventions that are not dominated. An illustrative example is
shown in Figure 2.5.
When the ICER for a treatment is lower than a threshold λ, usually called willing-
ness to pay or cost-effectiveness threshold, we say it is cost-effective. This threshold
varies wildly across different countries and has been and still is subject to passionate
debate Claxton et al. (2015). The (NMB) of an intervention IA as a function of λcan
be defined as

NMBIA
(λ) = λ·EA − CA .

Therefore, if the value of λ is known, we are able to compute the NMB of each
intervention. The intervention that maximizes the NMB is the most cost-effective.
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Figure 2.5.: Cost-effectiveness plane of treatments for gastro-oesophageal reflux
disease (GORD) relative to maintenance H2RA Goeree et al. (1999). The line
joining strategies C, A, E and B is the efficiency frontier. Treatment F is domi-
nated by extended dominance by treatment B.

2.3.2. Modeling for CEA

Decision analytic models use mathematical relationships to define a series of con-
sequences derived from a set of alternative options. Based on the inputs of the
model, the likelihood of each consequence is expressed in terms of probabilities.
Each consequence has an estimated cost and an outcome. It is therefore possible to
calculate the expected cost and expected outcome of each option being evaluated.
A key purpose of decision modeling is to allow for the variability and uncertainty
associated with decisions. The use of models for economic evaluation in health care
has been controversial, but the popularity of decision modeling has increased due to
the required features of any economic evaluation, such as using all relevant evidence,
considering all relevant options, using an appropriate time horizon (often as long as
a lifetime), and the ability to translate uncertainty in the evidence into decision un-
certainty. Randomized controlled trials are important to generate evidence for the
evaluation of health care interventions, but replacing models with trials for economic
evaluation is usually not feasible, as it is not possible to meet the requirements we
just listed.

The parameters of a model are usually estimated —either from data or by human
experts— and are therefore subject to uncertainty. The purpose of sensitivity analy-
sis is to reflect the uncertainty in the input parameters and analyze how it translates
into uncertainty over the outputs of interest (cost, effects, and derived measures, such
as ICER) and therefore into decision uncertainty (Briggs et al., 2006). The simplest
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Figure 2.6.: Cost-effectiveness acceptability curve for different types of hip pros-
theses Briggs et al. (2004)

form of sensitivity analysis, called one-way sensitivity analysis is to simply vary one
value in the model by a given amount, and examine the impact that the change
has on the model’s results. Probabilistic sensitivity analysis (PSA), is a form of
sensitivity analysis where some parameters are defined by probability distributions
(also called second order probabilities) rather than point estimates (Claxton et al.,
2005). PSA has the advantage, in comparison with one-way sensitivity analysis, of
accounting for the uncertainty in all parameters at the same time. The choice of
distribution to reflect uncertainty is not arbitrary and must be done according to
the type of the parameter and its method of estimation.

Commonly Monte Carlo simulation is used to propagate uncertainty in the model.
A high number of simulations is run by drawing samples from the probability dis-
tributions. Each simulation results in a estimation of expected costs and efficiency.
The variability in these results reflects the uncertainty in the expected cost and
efficiency of interventions.

One way to represent the results of PSA is the cost-effectiveness acceptability curve
(CEAC) (Briggs, 1999). It presents the probability that a given intervention is more
cost-effective than the alternatives for a range of willingness to pay thresholds. For
example, Figure 2.6 shows the CEAC for different prostheses for hip replacement as
described in Briggs et al. (2004).

Decision uncertainty implies that even if we make the best decision based on available
evidence, there is a chance that the wrong decision will be made. The expected cost
of uncertainty is determined by the probability of making the wrong decision and the
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cost of making the wrong decision in terms of health benefit and resources forgone.
The expected costs of uncertainty can be interpreted as the expected value of perfect
information (EVPI), as perfect information eliminates the possibility to make the
wrong decision.

There is a wide range of modeling techniques available, and some problems are
more naturally represented in certain modeling techniques than in others. The rest
of this section describes the most relevant modeling frameworks, their strengths and
weaknesses.

2.3.2.1. Atemporal models

For relatively simple models or decision problems with very short time horizons,
atemporal models may be appropriate. The common feature of these models is that
the elapse of time is not explicit. Such models include decision trees and influence
diagrams (Nielsen et al., 2007; Arias and Díez, 2015) . Atemporal models are not
suitable to model decision problems involving a risk that is continuous over time,
in which events may occur more than once, and when the utility of an outcome
depends on when it occurs. Most analytic problems involve at least one of these
considerations. Hence, modeling such problems with atemporal models may require
unrealistic or unjustified simplifying assumptions.

2.3.2.2. State transition models

State transition models (STM) are probably the most widespread kind of models
for health economic modeling. STMs conceptualize the treatment of a patient as
its evolution over time through a finite set of mutually exclusive and exhaustive
health states: it is considered that a patient is in one of the health states at any
time. All clinically important events are modeled as transitions from one state to
another. Transitions have an assigned probability whereas each state has a cost
and an outcome. The structure of such models is usually represented using state
transition diagrams, which define the set of states (with circles) and the allowed
transitions amongst them (with arrows), and Markov cycle trees (Hollenberg, 1984),
which consist of a decision tree whose leaves are state transition diagrams.

STMs do not capture interactions among individuals; they model a single (closed)
cohort, and allow transitions to occur only at specified time intervals. In fact, time
is discretized into a finite number of cycles of a fixed length, and transitions only
happen at a certain moment in the cycle. STMs are useful when the model requires
time-dependent parameters (e.g., probability of recurrence for a patient with AIDS),
time to an event (e.g., disease-free survival), or repeated events (e.g., second heart
attack). STMs include Markov model cohort simulation (Becker and Geiger, 1994;
Sonnenberg and Beck, 1993) as well as individual-level STMs (Siebert et al., 2012).
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Markov models, also called cohort models, are named after their assumption of the
Markov property. According to the Markov property, transition probabilities do
not depend on history, i.e. neither on past states nor on the time spent in the
current state. A Markov model is evaluated calculating the proportion of the cohort
in each state in each cycle based on transition probabilities. Markov models can
overcome the Markov property by creating states that contain information about
an individual’s history, such as tunnel states (Sonnenberg and Beck, 1993), which
represent the number of cycles spent in a certain state. However, this can greatly
increase the number of states, resulting in very large models that are difficult to
manage. Their main advantages over more complex formalisms are that they are
easy to develop, debug, and analyze and that in general are not computationally
expensive. Their principal disadvantage over individual-level STMs is their inability
to handle history without it leading to state explosion.
Individual-level STMs (also called patient-level simulation or microsimulations) are
not limited by the Markov property, and unlike cohort models, they keep track of
each individual’s history using tracker variables. These models simulate one individ-
ual at a time, using first-order Monte Carlo. The main disadvantages of individual-
level STMs over Markov models are that they are usually more demanding of data,
computationally expensive (often requiring millions of simulations to obtain stable
outcomes), and that they are more difficult to build and debug. It is worth noting
that an individual-level STM without tracker variables is actually a Markov model
that is evaluated using a stochastic inference algorithm instead of exact inference.

2.3.2.3. Discrete event simulation

Discrete event simulation (DES) is a modeling method characterized by the ability
to represent complex behavior within populations as well as interactions between
individuals with their environments (Pidd, 2004). The term “discrete” refers to the
fact that DES moves forward in time at discrete intervals, but time management is
more flexible and efficient than restricting occurrences to fixed time intervals, be-
cause the model jumps from the time of one event to the time of the next. Instead of
a cohort, DES models define a set of entities, which are objects that have attributes,
experience events, consume resources and enter queues, over time. DES is especially
useful in applications to analyze systems with constrained resources or interactions
between individuals (Karnon et al., 2012). In fact, experts agree (Karnon, 2003;
Roberts et al., 2012) that simpler models should be used unless the characteristics
of the problem justify the extra complexity.

2.3.2.4. Dynamic transmission models

Dynamic transmission models (Pitman et al., 2012), also called system dynamics,
are capable of reproducing the direct and indirect effects that may arise from a com-
municable disease control program. Contrary to other (static) models, which assume
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a constant risk of infection, dynamic transmission models define risk of infection as
a function of the number of infectious individuals. Dynamic models are important
when an intervention affects a pathogen’s ecology or when the intervention affects
disease transmission. Most dynamic transmission modeling has been performed
using system dynamics, where transitions between compartments are governed by
differential equations.
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3. Decision analysis networks

You take the blue pill, the story ends. You wake up in your bed and
believe whatever you want to believe. You take the red pill, you stay in
wonderland, and I show you how deep the rabbit hole goes.
Morpheus

3.1. Basic properties of DANs

Pushed by the severe complications encountered when trying to model complex med-
ical decision problems with existing formalisms, (Díez et al., 2012) proposed a new
formalism called decision analysis networks (DANs). The objective was to create a
formalism that would help represent real-world asymmetric decision problems more
naturally.

Example We will illustrate the definition and evaluation of DANs with a running
example, which is very similar to the diabetes problem described in (Demirer and
Shenoy, 2006). Consider a physician who is trying to diagnose whether or not a
patient is suffering from diabetes. The patient might or might not show a visible
symptom of the illness. The physician has the chance to perform two different tests,
a blood test and a urine test. Each test has an assigned cost and different specificity
and sensitivities. Ultimately, the physician has to decide whether to treat the patient
for diabetes or not. The DAN representing this problem is shown in Figure 3.1.

3.1.1. Definition

The set of variables of a DAN, V, is partitioned, as in influence diagrams, into three
disjoint subsets: chance variables C, decisions D, and utility variables U. A DAN
also has an directed acyclic graph such that each node represents a variable.

Restrictions A restriction associated to a link X → Y , such that X and Y are
chance or decision variables, is a pair (x, y), where x is a value of X and y is a value
of Y . It means that variable Y cannot take the value y when X takes the value
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Figure 3.1.: A DAN for the diabetes problem. The decision about a test may
depend on the presence of the symptom and on the result of the other test. There
is no constraint on the order of the tests.

x. When all the values of Y are incompatible with x, a particular value of X, we
say that there is a total restriction and denote it by (x, Y ). It implies that in some
scenarios the variable Y does not exist. When there is a restriction (x, y) but every
value of X is compatible with at least one value of Y , we say that there is a partial
restriction. Thus, the DAN for the reactor problem (Covaliu and Oliver, 1995; Bielza
and Shenoy, 1999) (Figure 3.2) has a partial restriction for the link Result of test −→
Build decision, because a bad test result prevents the construction of an advanced
reactor, as shown in Figure 3.3, but every value of Result of test is compatible with
at least one value of Build decision.
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Figure 3.2.: A DAN for the reactor problem. The main decision is which type of
reactor to build, if any.

If Y is a chance variable, the restriction (x, y)—associated to the link X → Y , which
implies that X ∈ Pa(Y )—means that P (y | pa(Y )) = 0 for all the configurations
of Pa(Y ) in which X = x. Therefore, when Y is a chance variable, there is not
a significant difference between attaching a partial restriction to a link and setting
to 0 the corresponding cells in the conditional probability table.

Figure 3.3.: Compatibility table for the link Result of test → Build decision in
Figure 3.2. It means that a bad result prevents the construction of an advanced
reactor.

In contrast, if D is a decision, the restriction (x, d) means that when X = x the
decision maker cannot choose the option d—see again the example in Figure 3.3.

Potentials Each chance node Y has an associated conditional probability poten-
tial, denoted by ψ(y | pa(Y )). When there is a restriction (x, y) and X = x in
the configuration pa(Y ), then ψ(y | pa(Y )) = 0, because y is incompatible with
x. If at least one value of Y is compatible with all the values of its parents in the
configuration pa(Y ), then ψ(y | pa(Y )) is a conditional probability distribution for
Y given that configuration, as shown in Figure 3.4. Similarly, each utility node U
has an associated potential, u(pa(U)).
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Figure 3.4.: Probabilistic potential associated to the chance node Blood test result.
The first two columns are 0 due to the total restriction (Dec: Blood Test = no,
Blood test result). The third column defines a conditional probability distribution
for Blood test result (0.98 is the specificity of the test). The fourth column defines
another conditional probability distribution for the same variable (0.96 is the
sensitivity of the test).

3.1.2. Representing the availability of information

In DANs there are two ways to indicate when a variable becomes observed: always-
observed variables and revelation arcs. In both cases, we rely on the no-forgetting
hypothesis (see Section 2.1.3).

Always observed variables The value of a chance variable declared as always-
observed is known before making any decision. In Figure 3.1, the node Symptom is
marked with a red thick border to indicate that it is always observed.

Revelation links Given a link X → Y , such that Y is a chance variable, we can
declare that certain values of X reveal the value of Y ; we then say that X → Y is
a revelation link. In general, X is a decision node, but it might also be a chance
node; in this case, it means that Y is known only if a fortuitous event X occurs
and the value of X is observed. The revelation conditions are the set of values of X
that reveal Y . For the link Dec: Blood test → Blood test result for the DAN of the
diabetes problem, the value yes (i.e., the decision to do the test) reveals the result
of the test, but the value no (not to do the test) does not. It is contradictory to
declare x as a revelation condition for Y when there is a total restriction (x, Y ).

3.1.3. The meaning of links

In DANs a link X → Y may have five meanings:
1. Causal influence: For example, the links Diabetes→ Symptom and Diabetes→

Blood test result mean that the presence of the disease affects the probability
of having the symptom and the outcomes of this test, respectively. Y must be
a chance node.

2. Functional dependence: For example, the four links pointing at Cost of blood
test, Cost of urine test, and Quality of life denote which variables affect directly
the decision maker’s preferences. Y must be a utility node.
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3. Temporal order: For example, the link Dec: Blood Test → Therapy indicates
which decision is made first. Y must be a decision.

4. Revelation: In general X is a decision, but it may also be a chance node, as
explained above; Y must be a chance node.

5. Restriction: X must be a chance node or a decision, because utility nodes do
not have children; Y must be a decision or a chance node.

The first three meanings are the same as in IDs. Revelation links in DANs replace
information links in IDs. Restrictions are a novelty of DANs with respect to IDs.

3.1.4. Symmetric DANs

A DT is symmetric if (1) every path from the root to a leaf has the same variables and
in the same order, and (2) every node representing the variable X has an outgoing
branch for each value x. A DAN is symmetric if (1) it has no restrictions, (2) if a
value of a variable X reveals Y , then all the other values of X reveal Y , and if (3)
a directed path connects all the decisions.
The third condition induces a total ordering of the decisions in the DAN: D1 <
. . . < Dn. The first and second conditions imply that a symmetric DAN can be
converted into an equivalent symmetric DT because when expanding the DT, the
set of candidate chance nodes is the same for every branch of the tree. Therefore
the first condition for a symmetric DT is always met. The second condition of
symmetric DTs is guaranteed by the first condition of symmetric DANs.
The properties of symmetric DANs are very similar to those of IDs (see Section 2.1.3).
A DAN with n decisions {D1, . . . , Dn} induces a partition of C, the set of chance
variables, into n + 1 disjoint subsets, {C0, . . . ,Cn} such that a chance variable X
belongs to Ci, with 0 ≤ i < n, if and only if the decision Di reveals X and no other
decision Dj with j < i reveals it while with IDs the condition is that there is a link
C → Di+1 but no link X → Dj to a previous decision Dj (j ≤ i). Both in a DAN
and in an ID, C0 is the set of variables observed before making the first decision, Ci

is the set of variables observed after decision Di and before Di+1, and Cn is the set
of unobservable variables. Therefore the transformation of a symmetric DAN into
an ID is straightforward: for every chance variable X, if X is always-observed, i.e.,
if X ∈ C0, draw a link X → D1; if X is revealed by decision Di (and not revealed
by any previous decision), i.e., if X ∈ Ci, draw a link X → Di+1. The conversion
of an ID into a symmetric DAN is analogous.
As a consequence of this close relation between the two types of networks, any al-
gorithm for IDs can be used to evaluate symmetric DANs. In general, it is not
even necessary to convert the DAN into an ID; it is enough to infer the partition
{C0, . . . ,Cn} from the graph of the DAN. For example, the variable elimination
algorithm (Jensen and Nielsen, 2007; Luque and Díez, 2010), which consists essen-
tially of applying Equations 2.9 and 2.11 , is identical in both cases. The arc reversal
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Table 3.1.: Main features of several methods for representing decision problems.

dummy states total order inform. links
IDs (Howard and Matheson, 1984) yes yes yes
SHM IDs (Smith et al., 1993) no yes yes
AIDs (Nielsen and Jensen, 2000) no yes yes
SVNs (Shenoy, 2000) no yes yes
UIDs (Jensen and Vomlelová, 2002) yes no no
SIDs (Jensen et al., 2006) no no yes
DANs (Díez et al., 2012) no no no

algorithm (Olmsted, 1983; Shachter, 1986) can also be applied to DANs: the only
difference is that in an ID the first nodes to be removed (i.e., Cn) are those that
have no outgoing information links, while in a DAN they are those that have no
incoming revelation links.

3.1.5. DANs vs. existing formalisms

In this section we examine six formalisms for decision analysis with DANs. First we
compare DANs with IDs, which are the standard framework for decision analysis,
and then we analyze six formalisms for asymmetric decision problems.
Table 3.1 summarizes the main features of each method. The first column indicates
whether a formalism needs dummy states to “symmetrize” the problems containing
structural asymmetries, as explained above. IDs and UIDs suffer from this draw-
back. The second column specifies which formalisms require a total ordering of the
decisions. Obviously, these formalisms are inadequate for modeling problems having
order asymmetry. Finally, the third column shows which methods need information
links. These links, which indicate whether a variable is known for a decision, com-
plicate the graph when there are many sequences of decisions that can reveal a
variable.

DANs vs. IDs We have shown that symmetric DANs are equivalent to IDs. There-
fore, they are equally suited for representing symmetric problems. As discussed ear-
lier, IDs need dummy states or dummy utility nodes to handle structural asymmetry
and order asymmetry poses great complications that grow exponentially with the
number of decisions. In contrast, DANs do not need dummy states, nor dummy
utility nodes, the size of the model is proportional to the number of decisions, and
adding new decisions to the model is straightforward.

DANs vs. other formalisms for asymmetric decision problems UIDs and DANs
share the advantage of not needing information links, but differ from each other in
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that UIDs are inappropriate for problems having structural asymmetry. First, they
can not represent restrictions. Second, in a UID an observable variable becomes
observed when all its ancestral decisions have been made, independently of the
option chosen for each decision; in a DAN a revelation link X → Y indicates which
values of X reveal Y . For example, the decision to do a test reveals its result, while
the decision not to do it does not reveal anything. This property cannot be modeled
directly with a UID: it would be necessary to add a dummy state to the result-of-test
variable, as explained in Section 2.2.
The five frameworks proposed previously for asymmetric problems have been illus-
trated only with toy problems, which in several cases were designed just to illustrate
the strengths of the new formalism. None of these formalisms has tried to solve all
the asymmetric problems proposed previously in the literature. Additionally, no
software tool, either commercial or open-source, has implemented them any of these
formalisms.1 These limitations may explain why none of these frameworks, proposed
as an alternative to IDs, has been used to build any real-world application.
In contrast, DANs were developed with a complex medical problem in mind (the
mediastinal staging of non-small cell lung cancer) based on several tests, which
is very similar to the n-test problem. Later another DAN was built for decid-
ing when to implant a knee prosthesis (León, 2011) These networks are available
at www.ProbModelXML.org/networks, together with other DANs for the problems
proposed previously in the literature on asymmetric decision formalisms: the used
car buyer problem (Howard, 1984), the reactor problem (Covaliu and Oliver, 1995),
the diabetes problem (Demirer and Shenoy, 2006), the dating problem (Nielsen and
Jensen, 2000), and the king’s problem (Jensen and Vomlelová, 2002); all these net-
works were built with OpenMarkov, an open source software tool that supports the
edition and evaluation of DANs. Finally, DANs can also solve other real-world
problems; for example, troubleshooting different types of devices (Heckerman et al.,
1995), which is very similar to the n-test problem.
Decision analysis networks (DANs) are a new formalism to model and solve asym-
metric decision problems, as described in Section 3.1. The author of this thesis began
working on DANs after the formalism had been defined, and had the objective to
develop inference algorithms to evaluate DANs. The first method proposed for the
evaluation of DANs was the conversion to a decision tree (Section 3.2) that could
be evaluated using the roll-back algorithm (Raiffa, 1968). We were aware at the
moment of proposing such conversion that it was not the most efficient approach,
but we decided it had the added value of defining the semantics of DANs for those
familiar with decision trees. The need for more efficient algorithms led us to the
development of the algorithm described in Section 3.3.

1UIDs are a partial exception to this assertion: they were implemented in Elvira (Jensen and
Vomlelová, 2002; Ahlmann-Ohlsen et al., 2009; Elvira Consortium, 2002; Luque et al., 2008)
with the goal of measuring the efficiency of some inference algorithms; but Elvira’s graphical
user interface for building UIDs is not mature, and no document explains how to build UIDs
in Elvira.
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3.2. Equivalent decision tree

In this section we describe the conversion algorithm from a DAN to a decision tree
(DT). In the first phase, the algorithm builds the structure of the tree and the in
the second it assigns probability and utility values. Then the DT can be evaluated
with the standard roll-back algorithm (Raiffa, 1968).

We denote each node in the tree by the variable that it represents — for instance
X— and each branch departing from this node by its associated value, x.

3.2.1. First phase: structure of the tree

Initialization: The tree is initialized by placing the original DAN as the only node
in the tree.

Invariant: The leaves of the tree represent DANs or utility values. The rest of
nodes represent either chance or decision variables, or a meta-decision (described
below). The branches represent either the assignment of a value to the variable
whose node is the source of the branch or an assignment to a meta-decision.

Termination condition: All the leaves in the tree are utility nodes (values).

3.2.1.1. Recursion

There is a base case and four possible recursive cases. They are considered in order
and if one holds, the next cases are ignored.

Base case: The DAN only has utility nodes Replace the DAN with a utility
node whose value is the sum of the utility nodes remaining in the DAN.

The algorithm always terminates: in cases 1, 2, and 4 the expansion of a DAN with
n nodes generates a finite number of DANs with n − 1 nodes; in case 3, the new
DANs still have n nodes, but every one is in case 2, which ensures the elimination
of a decision node when expanding each new DAN; therefore, case 3 can only occur
a finite number of times.

Recursive case 1. The DAN has always-observed nodes Select always-observed
node X that is not a descendant of any other always-observed node. Replace the
DAN in the tree with X. For each value x of X, create a copy of the DAN and:

1. delete the node X from the new DAN;

2. if x reveals the value of other variables, mark them as always-observed in the
new DAN;
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3. if there is a total restriction (x, Y ), remove Y and all the descendants of Y
that are not descendants of another decision;

4. if there is a restriction (x, y), remove y from the domain of Y ; and
5. put the new DAN in a branch x outgoing from node X.

Recursive case 2. The DAN has a decision D that is an ancestor of all the
other decisions Put D as a node in the tree, create a copy of the DAN for each
value d of D, and execute the same five steps as in the previous case, with one
exception: in step 2, if d reveals a variable Y that is a descendant of other decisions
{D′1, . . . D′n}, draw a link D′i → Y for i ∈ {1, . . . , n} and declare that all values
d′i of D′i reveal Y .2 If d reveals a variable Y that is not a descendant of any other
decision, then declare Y as always observed, as in case 1.

Recursive case 3. There are n decisions {D1, . . . , Dn} such that there is no
directed path between any two of them In the tree, replace the DAN with a
meta-decision node indicating which decision will be made first. Create n branches
outgoing from the meta-decision node, each branch i labeled with Di. In the node
at the end of each branch i, put a copy of the DAN wheren − 1 links Di → Dj

(j 6= i) have been drawn to indicate that Di will be the first decision.

Recursive case 4. The DAN has chance nodes (that are not always-observed)
Select one chance node randomly, say X, and replace the DAN with a node X in
the tree. For each value x of X, create a copy of the DAN, remove X, and put the
new DAN at a branch x.3

Example Consider the conversion of the DAN for the diabetes problem (3.1) into
a DT. The tree is initialized by putting the original DAN in the root of the tree. In
the first iteration, the DAN has one always-observed node, Symptom (case 1); then
this node replaces the original DAN as the root of the tree (represented by S in 3.6);
two branches are added, one for present (+s) and one for absent (¬s). Each leaf is
a DAN in which the node Symptom has been removed, and has two decisions (Dec:
Blood Test and Dec: Urine Test) with no directed path between them (case 3).
Therefore we put in the tree a meta-decision node OD (order of the decisions) with
two branches. The DAN at the bt branch has a link Dec: Blood Test → Dec: Urine
Test, which indicates which is the first decision (case 2). This DAN is later replaced
with a node BT (Dec: Blood Test) having two branches: +bt (do test) and ¬bt

2The reason for this exception is that if Y is a descendant of D′
i then this decision can be

interpreted as a cause of Y and therefore Y cannot be known before making D′
i.

3In this case, the restrictions and revelation conditions are ignored. In fact, if X can never be
observed, then no link X → Y should have total restrictions or revelation conditions.
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(do not test). In the DAN at the ¬bt branch the node Dec: Blood Test has been
removed when putting this variable in the tree; Blood test result has been removed
because of the total restriction (Dec: Blood Test = no, Blood test result). In the
DAN at the +bt branch the node Dec: Blood Test has been also removed, but the
node Blood test result remains; it is now marked as always observed because of the
revelation condition the link Dec: Blood test → Blood test result. This DAN gives
rise to the branches +b (positive test result) and ¬b (negative) in Figure 3.6. Each
of the three UT nodes in this figure is the result of expanding a DAN in which Dec:
Urine Test was the first decision to make (case 2). When the decision is +ut (do
test), the variable U is marked as always-observed and in the subsequent expansion
of the DAN it is put in the corresponding branch of the tree. When the decision is
¬ut (do not test), U is removed. The node Th (Therapy) is the result of expanding
a DAN in which this was the only decision (again case 3). The node D (Diabetes)
results from a DAN having one chance node and three utility nodes (case 4). The
expansion of the DAN that was at this node, D, generates the two utility nodes
shown in this figure (base case).

The resulting tree could be further pruned of suboptimal branches by introducing
a priority in cases 2 and 3 for decisions revealing a set of variables that is a proper
superset of the sets of variables revealed by other decisions. The formal justification
is the same as in the case of unconstrained influence diagrams (Jensen and Vom-
lelová, 2002). For example, in Figure 3.6, the decision Therapy does not reveal any
variable. Therefore, even if the links Dec: Blood Test →Therapy and Dec: Urine
Test→Therapy were not present, the node OD in Figure 3.1 should have only two
outgoing branches, bt and ut. Making the Therapy decision first would never result
in a higher expected utility, as additional information can only improve the expected
utility.

3.2.2. Second phase: assignment of utilities and conditional
probabilities

The second phase of the algorithm consists of assigning the numerical parameters
of the DT. Each path from the root node to a leaf node defines a scenario, i.e.,
a configuration of the variables in that path. The utility of a leaf is the sum of
the utility functions in that scenario; for example, the utility for the upper util-
ity node in 3.6 is u1(+bt) + u2(+ut) + u3(+th,+d), where u1, u2, and u3 are the
utility functions for the nodes Cost of blood test, Cost of urine test, and Cost of
therapy, respectively. The probability of a scenario is the product of the conditional
probabilities involved in it; for example, the probability of the upper scenario is
P (+s | +d) · P (+b | +d,+bt) · P (+u | +d,+ut) · P (+d). Initially we compute the
probability of each branch as the sum of the probabilities of the scenarios containing
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Figure 3.5.: Decomposition of a DAN representing the diabetes problem during
the execution of the conversion into a DT.
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Figure 3.6.: A decision tree for the diabetes problem, equivalent to the DAN in
Figure. 3.1.

it; then, we normalize the probabilities of the branches going out from each chance
node. This way we obtain an equivalent DT for the DAN.

The above algorithm may generate different DTs for one DAN because in cases 1
and 4 there may be several nodes to select. However, these trees only differ in the
order of the chance variables placed between two consecutive decisions. These DTs
are equivalent in the sense that there is a one-to-one correspondence between the
decision nodes of each pair of trees, and the optimal policies and the maximum
expected utility are the same for all these trees.

3.2.3. Evaluation of the tree

This tree can be evaluated with the standard roll-back algorithm (Raiffa, 1968),
which proceeds from the leaves to the root: the utility of a decision node is the
maximum of the utilities of the nodes at its branches, and the utility of a chance
node is the average of the utilities of the nodes at its branches, weighted by their
probabilities.

3.3. Recursive decomposition into symmetric DANs

The algorithm in 3.2 converts a DAN into an equivalent DT recursively decomposing
the original DAN, until it is completely decomposed and all the nodes in the tree
represent single variables. However, the recursion can stop once the DANs in the
leaves are symmetric, and therefore evaluable using any algorithm for IDs, which are
much more efficient in general. For example, when expanding the tree in Figure 3.6
the DANs at the branches +ut and ¬ut are symmetric.
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Figure 3.7.: Decomposition of the diabetes DAN into symmetric DANs.

Besides, we don’t need to expand S, since it induces no asymmetry and therefore
DANs containing S are still symmetric. Therefore, we may represent it as a tree
whose leaves are symmetric DANs, as shown in Figure 3.7.

The recursive algorithm we propose here is similar to the expansion of a DT, but
has two important differences: recursion stops when DANs are symmetric and only
variables inducing asymmetry multiply the number of calls to the recursive function.

Let V be the set of observed variables. We denote with VA the subset of observed
variables that induce asymmetry by imposing restrictions on other variables or con-
ditionally revealing other variables.

The recursive function receives a DAN as input parameter and returns a pair
{U(V), P (V)}, where U(V) is the expected utility potential for the set of variables
V, and P (V) its joint probability.

Base case. The DAN is symmetric. In this case, and both its expected util-
ity U(V), and the joint probability P (V)4 can be calculated using any inference
algorithm for IDs. There are two exhaustive5 recursive cases that are considered in
order in the recursive function.

Recursive case 1. VA, the set of observed chance variables that impose re-
strictions or conditionally reveal other variables, is not empty In this case,
we select a variable X ∈ VA that is not a descendant of any other variable in VA

4P (V) can be calculated efficiently on a Bayesian network containing V and their ancestors and
by marginalizing out the unobserved variables.

5If we are not in the base case, we must be in one of these cases
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and we call the recursive function for each value x of X passing it a DAN where
X has been instantiated w.r.t x as input parameter. By instantiating X w.r.t x,
we obtain a reduced DAN where X has been removed and in accordance with the
restrictions of the form (x, y) domain of the Y ’s have been reduced; if there was a
total restriction (x, Y ), Y and all its the descendants that are not descendants of an-
other decision are removed; and the variables revealed by x, Vx, have been marked
as always observed. The recursive calls return Ux(V′) and Px(V′) for each value x
of X, where V′ = {V\X ∪Vx} is the set of observed variables in the reduced DAN.
The expected utility for each x of X, Ux(V), is calculated multiplying Px(Vx | V)
and Ux(V′) and marginalizing out Vx.
The new P (V) is calculated marginalizing out Vx from Px(V′) for each value of x.

Ux(V) =
∑
Vx

Px(Vx | V)Ux(V′)

Recursive case 2. D = {D1, . . . Dn}, the set of initial decisions is not empty:
Di ∈ D if and only if there exists no direct path from any other decision to Di

For each D in D, we do the following: If D imposes restrictions or conditionally
reveals other variables, we call the recursive function for each value d of D passing
it a DAN where D has been instantiated w.r.t d as input parameter. In contrast
with the instantiation of chance variables, variable Vd conditionally revealed by
d is only truly revealed (and therefore marked as always observed) if it has no
ancestral decisions. Revelation links are added from all its ancestral decisions to
Vd otherwise. The recursive calls return Ud(V′) and Pd(V′) for each value d of D,
where V′ = {V ∪ Vd}6 is the set of observed variables in the reduced DAN. The
expected utility for each d of D, Ud(V), is calculated multiplying the probability of
Pd(Vd | V), and Ud(O′) and marginalizing out Vd .

Ud(V) =
∑
Vd

Pd(Vd | V)Ud(V′)

The utility for a decision node UD(V) is the value Ud(V) that maximizes utility for
each configuration of V.

UD(V) = max
d∈D

Ud(V)

If on the contrary, D neither imposes restrictions nor conditionally reveals any vari-
able, we call the recursive function only once passing it a DAN as input parameter

6Note that in this case, Vd is the set of variables truly revealed by d
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where: D has been marked as always observed and for each variable RD revealed by
D, if it does not have ancestral decisions it has been marked as always observed and
otherwise revelation links have been added from all its ancestral decisions to RD.
The recursive call returns in this case the expected utility U(V′, D). UD(V) is again
computed by choosing the value that maximizes the utility for each configuration of
V.

Algorithm 1: Asymmetric decomposition.
Function Evaluate(DAN):

Result: {U(V), P (V)}
if DAN is symmetric then
{U(V), P (V)} = IDAlgorithm (DAN);

else if VA 6= ∅ then
Pick X ∈ VA, where ¬∃Y ∈ VA, Y → X ;
foreach x of X do

DANx = Instantiate (DAN , x, X);
{Ux(V′), Px(V′)} = Evaluate(DANx);
Ux(V) = ∑

Vx

Px(Vx | V)Ux(V′);

Px(V) = ∑
Vx

Px(V′);

else if D 6= ∅ then
foreach D in D do

if D induces asymmetry then
foreach d in D do

DANd = Instantiate (DAN , d, D);
{Ud(V′), Pd(V′)} = Evaluate(DANd);
Ud(V) = ∑

Vd

Pd(Vd | V)Ud(V′);

P (V) = ∑
Vd

Pd(V′);

UD(V) = max
d∈D

Ud(V);
else

DAND = DAN where D and VD have been revealed;
{UD(V′), PD(V′)} = Evaluate(DAND);
UD(V) = ∑

VD

PD(VD | V)UD(V′);

P (V) = ∑
VD

PD(V′);

U(V) = max
D∈D

UD(V);

return {U(V), P (V)}

Having calculated UD(V) for each D in D implies that we have calculated every
possible ordering of the decisions in D. We can now calculate UD(V) maximizing
the utilities of UD(V) for each configuration of V.
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For example, at the upper node UT in Figure 3.7 V = {S, BR}; the evaluation of
DAN1 and DAN2 returns the utility functions U1(s, br) and U2(s, br), respectively.
The expected utility for that node is UUT (+bt)(s, br) = max(U1(s, br), U2(s, br)).
The only variable observed at the node UT in the branch (bt,¬bt) is S; therefore,
the utility at this node is UBT (¬bt)(s) = max(U3(s), U4(s)). The utility at the root
is UOD(s) = max(UBT (s), UUT (s)).

3.3.1. Complexity

The upper bound for the number of recursive calls is O(sm·n!), where m is the
number of variables that either impose restrictions or conditionally reveal variables,
s is the highest cardinality of those variables, and n is the number of unordered
decisions (assuming that there is only one level of unordered decisions). In the n-test
problem, there are n unordered decisions, each of which imposes total restrictions
on the corresponding chance variable; therefore, the complexity is O(2n·n!), which
makes the problem intractable even for relatively small values of n.

3.3.2. Reducing complexity reusing intermediate results

However, the number of recursive calls can be drastically reduced exploiting the
fact that the order in which past decisions have been taken is not relevant for the
expected utility of future decisions. For example, the reduced DAN resulting from
taking the decision BT = +bt first and then UT = +ut is identical to the one
resulting from taking the decisions in the reverse order. In fact, all DANs in 3.7
are repeated twice: DAN1 = DAN5, DAN2 = DAN7, DAN3 = DAN6, and DAN4
= DAN8. By storing the expected utilities of the reduced DANs in a cache we can
bring the number of recursive calls from O(sm·n!) down to O(sm). The number of
intermediate results to store is O(sm).
The advantage of this algorithm is that it profits from the reduction of the problem
when restrictions are applied. This is also true for the size of the cache. For example,
in the n-test problem the cache contains a single table with 2n entries; the rest of
tables are smaller because the variables corresponding to the results of tests that
are not performed are not present

3.4. Empirical comparison of evaluation algorithms

3.4.1. Experiments

In our experiments we have used several DANs that model the some of the problems
proposed in the literature: the used car buyer problem (Howard, 1984), the reactor
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Table 3.2.: Computational time for the different algorithms (ms).

DT S-DAG RD
Reactor 64 21 50
Used car buyer 102 26 55
Dating 122 83 46
King 3944 117 183
Mediastinet 84720 353 370
Diabetes (2 tests) 128 33 40
3-tests 825 73 89
4-tests 3457 240 187
5-tests 55799 633 419

problem (Covaliu and Oliver, 1995), the dating problem (Nielsen and Jensen, 2000),
the king problem (Jensen and Vomlelová, 2002), the diabetes problem (Demirer and
Shenoy, 2006), and Mediastinet. The latter is a DAN for the mediastinal staging
of non-small cell lung cancer, which is an adaptation of the ID Mediastinet (Luque
et al., 2009). The main difference is that in the DAN there is not a total ordering
among the 5 possible tests; there is only a partial ordering, due to some technical
requirements. Another difference is that all the dummy states have been removed,
except for the result a test that affects the sensitivity and specificity of the three sub-
sequent tests. These networks are available at www.ProbModelXML.org/networks.
We have also tested the n-test problem for different values of n. This problem
consists in deciding how to treat a patient that may suffer from a certain disease;
after an initial examination of the symptoms, the doctor may order some of the n
available tests, each one having a cost; each test can be performed at most once and
its result will be known immediately. In our experiments we have used the simplest
version of the problem, in which there is only one symptom and all the variables are
binary, i.e., the disease and the symptom are either present of absent, and the result
of each test is either positive or negative. The diabetes problem is a particular case
in which there are only two tests (n = 2).
In the experiments we have compared the following algorithms:

1. equivalent decision tree (DT);
2. recursive decomposition into symmetric DANs (RD); the symmetric DANs in

the base case were evaluated using variable elimination;
3. variable elimination on an S-DAG. This algorithm is the result of applying

S-DAGs (Jensen and Vomlelová, 2002) for the evaluation of DANs.
The algorithms have been implemented in OpenMarkov, The experiments were con-
ducted on a PC with an Intel Core i7-2670QM CPU @ 2.20 GHz using Java’s default
heap size of 1GB.
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Figure 3.8.: Computational time for the n-test problem.

3.4.2. Results

The time necessary to evaluate the five toy examples proposed in the literature (the
first five networks in Table 3.4.1) is small for all the algorithms. Therefore we can
use any of them in practice without noticing much difference. However, for the
networks that have 5 or more tests, including the real-world application Mediastinet
, the algorithms proposed in this paper are much faster than the expansion of the DT.
S-DAG is more efficient than RD except for the dating problem, which has strong
structural asymmetry: one half of the network models the decision over where to go
if Emily accepts the invitation and another one for deciding what to do if she does
not; once we know her answer, the RD algorithm prunes almost half of the nodes,
and for this reason it is more efficient than S-DAG. In turn, RD is more efficient
than S-DAG because the coalescence compensates for the compacted S-DAG and
the algorithm takes profit of problem reduction thanks to asymmetry.
The space complexity of these algorithms os pf the same order of their time com-
plexity. In practice, the space complexity may be more relevant than the time,
especially when the DAN is used off-line to find out the optimal policy. In the case
of the n-test problem, the DT algorithm runs out of memory at n = 6, S-DAG at
n = 9 and RD at n = 13. The advantage in space requirements of RD over S-DAG
is that the former removes some variables as a consequence of the restrictions in the
DAN, which reduces the size of the probability tables, while the latter treats the
restriccions by adding dummy states that increase the size of the tables.
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4. Markov processes with atemporal
decisions
History is a cyclic poem written by time upon the memories of man.
Percy Bysshe Shelley

4.1. Introduction
Ever since the influence diagrams were proposed by Howard and Matheson (1984),
probabilistic graphical models have been used for decision making under uncertainty
in a wide range of areas, including medicine Boutilier (2005). Unfortunately, PGMs
are still relatively unknown in the field of economic evaluation in medicine, a field
that has long embraced the need for decision modeling Weinstein et al. (2003).
Typically, decision trees Raiffa (1968) were used to build and analyze economic mod-
els in medicine. Decision trees however, suffer severe limitations to model medical
problems; mainly, they do not explicitly consider time and their size grows expo-
nentially with the number of variables in the model, as discussed in Section 2.3.2.1.
Markov models Beck and Pauker (1983) (and more generally state transition mod-
els) added a temporal dimension, thus overcoming some of the limitations of decision
trees. They gained popularity rapidly, becoming the most popular instrument for
health economic evaluation. In the last decade, some have advocated for the adop-
tion of discrete event simulation (DES) modeling (see Section 2.3.2.3), but Markov
models remain, in spite of their shortcomings, the first option for modelers.
Given that current models are computer-based, the approach and software used
to implement them is of vital importance. According to a review of the use of
software for decision modeling as part of the National Institute for Health and
Care Excellence (NICE) of England and Wales, technology appraisal process Tosh
and Wailoo (2008), state transition models are most commonly implemented in
spreadsheet applications, such as Microsoft Excel. The structure of the model, as
well as its numerical parameters (for example, the transition probabilities) and its
evaluation (for example, the calculation of utilities) are encoded as formulas in the
spreadsheet. Sensitivity analysis is usually implemented by a set of macros in a
high-level programming language, such as Visual Basic for Microsoft Excel.
After spreadsheets, TreeAge Pro is the most used software package to build state
transition models. It offers the possibility of building and evaluating decision trees
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and Markov cycle trees using its GUI. However, the exponential growth of the size of
trees and the restrictions imposed by the software make complex models unwieldy.
Script-based statistical packages such as R, BUGS or STATA offer higher flexibility
and a myriad of statistical functions, but require higher expertise and lack the
clarity of graphical representations. DES models are usually built and evaluated
using proprietary software (Arena® and SIMUL8 are the most popular), but remain
marginal, due probably to lack of familiarity, the higher level of expertise required,
and a widespread belief that its disadvantages outweigh its advantages in most cases.

Probabilistic graphical models, thanks to their graphical structure, allow for the
design of intuitive qualitative models, capturing the probabilistic and informational
dependencies, thus helping the construction, inference, and understanding of com-
plex decision problems. Influence diagrams, the first and most popular PGM for
decision analysis, are very useful for a variety of decision problems, as explained
in Section 2.1.3, but are not appropriate to model decision problems involving a
continuous risk over time, or in which events may occur more than once, or when
the utility of an outcome depends on when it occurs.

In this chapter we propose a new formalism, called Markov Processes with Atemporal
Decisions (MPADs), as a particular type of PGM. MPADs are able to encode state-
transition models and are designed for cost-effectiveness analysis.

Support for building and evaluating MPADs has been implemented in OpenMarkov,
an open-source software package for PGMs. It offers the possibility to perform cost-
effectiveness analysis and several types of sensitivity analysis with MPADs using its
graphical user interface. Several examples of MPADs replicating cost-effectiveness
models in the literature are available online1.

Running example: HIV therapy In this chapter we use the evaluation of two
therapies for HIV infection as a running example to illustrate the main properties of
MPADs..The conceptual model was designed by Chancellor et al. (1997) to compare
the cost-effectiveness of lamivudine plus zidovudine (combination therapy) with that
of zidovudine alone (monotherapy). It is worth noting lamivudine was meant to be
given for only two years. In this model the health state of the patients is classified
into four possible states: State A, the least severe disease state, means that the
CD4 count is between 200 and 500 cells/mm3 whereas State B means less than 200
cells/mm3, State C represents AIDS, and State D represents death. The possible
transitions are depicted as arrows in Figure 4.1. The cycle length is one year. The
effectiveness was measured as the duration of life, without considering the quality
of life.

1At http://www.probmodelxml.org/networks
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Figure 4.1.: Transition diagram for Chancellor’s model

4.2. Definition

An MPAD consists of a graph, which defines the causal relations between the vari-
ables, and a set of potentials, namely probability distributions and utility functions.
The numerical parameters of MPADs define the potentials.

4.2.1. Structure

As mentioned in Section 2.1.1, a graph is an ordered pair G = (V,E) comprising
a set of vertices or nodes V and a set of edges or links E. As in other PGMs,
each node in an MPAD represents a variable and therefore both terms will be used
interchangeably henceforth. The set of nodes in MPADs is divided into three types
of nodes: decision, chance and utility2. Nodes representing properties that evolve
over time have indexes, shown between square brackets, as shown in Figure 4.2. The
subgraph that contains all the nodes X t having the same temporal index t and the
links between them is known as the t-th time slice; therefore there is a time slice for
each cycle.
Decision nodes, drawn as rectangles, represent choices available to the decision
maker. In Figure 4.2, Therapy represents the decision over which one of the two
therapies under evaluation to apply.
Chance nodes, drawn as rounded rectangles, represent all the variables that are not
under the decision maker’s direct control. In medical PGMs, they usually represent
the patient’s features, such as sex, age and the health state. Figure 4.2 contains four
chance variables. The variable State [0] represents the health state of the patient in
cycle 0 (start of therapy) and can take four values, one for each health state: A, B,
C and D. State [1] represents the state of the patient in cycle 1 (one year later) and
has the same domain as State [0]. Time in treatment [0] and Time in treatment [1]

2“Utility” is the term used in the PGM literature, while “value” is more common in other fields,
such as health economics.
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Figure 4.2.: The first two cycles of an MPAD for the HIV example

are numeric variables that represent, for each cycle, for how long has the patient
been under treatment.
Utility nodes represent the decision maker’s payoffs, such as costs and health out-
comes. They are drawn as hexagons. In Figure 4.2, Life years [0] and Life years [1]
represent effectiveness, while the other utility nodes represent economic costs.
Chance and value nodes can be either temporal or atemporal; for example, gender
is atemporal, whereas the health state and the costs incurred in each cycle are
temporal. In contrast, decisions in MPADs are always atemporal, as they are made
once and forever, generally at the start of the time represented by the model. This
is a key difference between MPADs and dynamic influence diagrams Tatman and
Shachter (1990), and leads to a completely different evaluation of the model. There
must be a directed path that passes through all the decision nodes, defining the
order in which decisions are made. The only exception to this condition is when the
ordering of the decisions is not relevant Nielsen and Jensen (1999), namely when
unordered decisions do not influence the expected utility for the rest of unordered
decisions.
Nodes in an MPAD are connected by directed links. Links to chance variables denote
causal influence. For example, State [1] in Figure 4.2 depends causally on State [0],
Therapy and Time in treatment [1]. Links to utility nodes reflect that the respective
utility function depends on the node at the source of the link. For example, the
effectiveness (Life years), the direct medical costs and the community care costs
only depend on the current state. However, the drug cost also depends on the
therapy type and on the time in treatment, because the patients being treated with
combination therapy receive lamivudine only during the first two years of treatment.
It is worth noting that, as it is common in temporal models, links cannot be drawn
from a node in a time slice to a node in a previous time slice (or to an atemporal
node).
We say the potential of a variable X is stationary after k if it remains unchanged
after the k-th slice. A temporal model is stationary after k if all its potentials are
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stationary after k and there is no other k′ < k that makes the model stationary.
Such a model admits a compact representation that contains only the first k slices. It
is then possible to unroll the model up to its time horizon h by cloning the last slice
h−k times. Usually, as it is the case in our example, temporal models are stationary
after the first two time slices; therefore, the graph in Figure 4.2 can be interpreted
as the compact representation of the model. A model that is stationary after k
may contain variables whose potentials become stationary earlier, i.e., after k′, with
k′ < k. In this case, these nodes can be removed from the compact representation
without losing information to produce the concise representation. Thus, in 4.2 we
could remove the utility nodes from the second slice without loss of information.
MPADs are usually defined specifying their concise representation.

It is important to stress the difference between a transition diagram Equation (4.1)
and the graph of a PGM Equation (4.2). In a transition diagram each node rep-
resents a state and each link a transition, while in a PGM each node represents a
variable. When an MPAD contains a variable representing states, the transition di-
agram can be understood as the inner structure of that variable. Another difference
is that a transition diagram may contain cycles—in particular, an arrow connecting
a node to itself means that the patient might remain in the same state—while the
graph of a PGM cannot have cycles.

4.2.2. Numerical parameters

An MPAD contains two types of numerical parameters: probabilities and utilities.
Each chance node defines a probability distribution conditioned on its parents in
the graph. In our example, the probability distribution for the parentless node
State [0] is not conditioned on any variable, and is therefore the a priori probability
P (State [0]). In a cohort interpretation of the model, this probability determines
the proportion of the cohort in each state at the beginning of the treatment. As we
assume that all the patients are initially in state A, the P (State [0] = stateA) = 1
and P (State [0] 6= stateA) = 0.

State [1], whose parents are State [0], Therapy, and Time in treatment [0], has
an associated conditional probability distribution, P (State [1] | State [0], Therapy,
T ime in treatment [1]), which can be defined as a four-dimensional matrix or as a
probability tree. Analogously, each utility node defines a utility function that indi-
cates how its value depends on its parents in the graph. In our example, the utility
function for node Life years [0], whose only parent is State [0], can be represented
by a one-dimensional matrix (a vector), ULife years[0](State [0]), taking the value 1
when the patient is alive (states A, B and C) and 0 when he is dead (state D).
Similarly, the function for Drug cost [0], which has three parents in the graph, is
UDrug cost[0](State[0], Therapy, T ime in treatment[0]).
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4.2.3. Criteria

MPADs support multiple decision criteria. In multi-criteria decision analysis with
PGMs, each utility variable needs to be assigned a criterion. In fact, cost-effectiveness
analysis is a special case of multi-criteria evaluation. In our example, the criterion
for Life years [0] and Life years [1] is effectiveness, while for the other utility nodes
it is cost. MPADs might also have a single criterion. Multi-criteria MPADs can be
evaluated as unicriterion models by selecting one criterion as the target criterion and
assigning a conversion factor from each of the other criteria to the target criterion.

4.3. Evaluation of MPADs

The goal of evaluation in influence diagrams is usually to find the strategy that
will maximize global expected utility. However, in a multiple criteria environment,
a strategy that maximizes a criterion does not necessarily maximize others and
therefore an optimal strategy need not exist. In fact, our goal might be to maximize
some criterion (effectiveness) and to minimize others (e.g. cost). Therefore, the goal
of the evaluation of an MPAD is to calculate the global expected utility, which is the
sum of the expected value of all the utility nodes, for all decisions and criteria. An
optimal strategy for the decisions can be calculated if conversion factors are provided
for the criteria, as explained in the previous section. In the case of CEA, once we
know the expected cost and effectiveness of each intervention, we can calculate
their respective net monetary benefit for a certain λ and pick the intervention that
maximizes the NMB, as explained in Section 2.3.1.

4.3.1. Expansion of the MPAD

Given that MPADs are usually defined using concise or compact representations, the
first step in the evaluation of an MPAD consists of building the expanded version. If
the concise representation is used, the first step is to add the nodes and links neces-
sary to get the compact representation. Once we have the compact representation,
the model needs to be unrolled up to the desired time horizon by cloning the nodes
in the last time slice and the links pointing at them as many times as necessary. An
expanded representation of an MPAD is an influence diagram and can therefore be
evaluated using influence diagram evaluation algorithms.

4.3.2. Exact inference

In exact inference, the probability of a node in the expanded graph is computed by
multiplying its probability distribution by the joint probability of its parents. In
a similar way, the expected value of a utility node is calculated by summing the
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utility for each configuration of parents multiplied by their probability. It is, in fact,
similar to cohort analysis (or cohort simulation) in Markov models. Efficient cal-
culation of expected utility can be done using inference algorithms such as variable
elimination Luque and Díez (2004). The efficiency of variable elimination may be
highly dependent on the heuristic used to determine the elimination order. Espe-
cially tailored heuristics where variables are eliminated starting from the last time
slice and eliminate all variables in a time slice before progressing to the previous one
improve the efficiency achieved with common heuristics. Exact inference is usually
only applicable with categorical or finite-state variables, but there are very useful
cases where exact inference can be used with numeric variables.

4.3.2.1. Exact inference with numerical variables

OpenMarkov’s exact inference algorithms are based on operations with table poten-
tials. Therefore, exact inference is possible only if, given the available evidence, ev-
ery potential can be transformed into a table. All potentials defined on finite-states
variables can be transformed easily into tables. Inference with numeric variables is
possible only when each of them has a finite set of possible values, because in this
case every potential can be transformed into a table. A numeric variable Y has a
finite set of values when:

1. It has an associated finding.
2. It has no parents and its potential is a delta3, because this potential induces

a finding for the variable.
3. The value of Y depends deterministically on its parents, y = f(x)—where

X = X1, ..., Xn is the set of parents of Y —and each parent has a finite
number of possible values.

In the third case, Y can be replaced with a finite-states variableY ′such that its states
represent the possible values of Y . The conditional probability for Y ′ is:

P (y | z) =
{

1 if y = f(z)
0 otherwise . (4.1)

The algorithm for converting the numerical variables of a network is as follows:
1. Assign all the possible findings, including those induced by the potentials.
2. Get a list of the variables sorted in topological order, i.e., if X is a parent of
Y , then X appears before Y in the list.

3. For each variable Y in t he list,
3Also known as Dirac’s delta function, where the whole probability density concentrates in a
single point.
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a) if Y is numeric, convert it into finite-states and convert its potential into
a table, as explained below;

b) if Y is not numeric but some of its parents is numeric, convert the po-
tential into a table.

The conversion of a numeric variable Y is as follows:
1. Create a new finite-state variable Y ′.
2. Create an empty list (the list of values of Y ′).
3. For each configuration x, add f(x) to the list (if it is was not already therein).
4. For each y′ in the list, create a new state of Y ′ having y′ (a string) as its name

and y′ as its numeric value.
5. Create a table potential P (y′ | x).
6. For each configuration x and each value y’, if y′ = f(x), then P (y′ | x) = 1,

else P (y′ | x) = 0.
In the above procedure, if any of the Xi ’s is a finite-state variable obtained by con-
verting a numeric variable, the computation of f(x) must be based on the numeric
value of Xi.
If a variable Z is finite-states but some of its parents in the original network were
numeric, then it is necessary to convert the potential P (z | y) into a table P (z | y′),
where Y and Y′ are the sets of parents of Z in the original network and in the
converted network. Let Ynum be the subset of numeric variables in Y and Y′num

the corresponding variables in Y′ . If Yfs is the set of finite states variables in Y,
then Yfs = Y\Ynum = Y\Ynum

The conversion of the potential is done as follows:
1. For each configuration y′num (a configuration of finite-states variables), we take
ynum as a set of numerical findings and project P (z | y′) onto a table which
will depend on Z and Yfs .

2. We combine all these tables into a bigger table that will depend on Y′.

4.3.3. Approximate inference

In approximate inference algorithms, joint probabilities and expected utilities are
calculated by running multiple iterations where the value of each variable is sampled
following a topological order (all parents are sampled before their child) using its
conditional probability distribution: the value of a chance node with parents is
sampled from the probability distribution defined by the configuration of sampled
states of its parents. The value of a utility node for each iteration is given by the
sampled states of its parents and its utility function. The induced probability for a
chance variable is estimated by calculating the proportion of iterations each value
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has been sampled. For example, if we have run 1,000 simulations and for variable X
the value x1 has been drawn 238 times, the estimated value for P (X = x1) is 0.238.
The expected value of a utility node can be estimated as the average of the utilities
sampled for that node.

It is analogous to individual level microsimulation in state transition models, where
virtual patients are modeled by assigning a state or a numerical value to each vari-
able in the model. In contrast with exact inference, approximate inference can be
used with numeric variables that do not fulfill the conditions described above. The
drawback of approximate inference is that it only gives approximate results; the
higher the precision we desire, the more iterations we need.

4.3.4. Analysis of the evaluation

Using these algorithms, OpenMarkovcan compute and display graphically the tem-
poral evolution of a variable, namely, the probabilities if it is a chance variable and
the utility (either instantaneous or cumulative) if it is a utility node, as shown in
Figure 4.3 and Figure 4.4.

Figure 4.3.: Temporal evolution of the variable State for combination therapy

The total economic cost of a strategy is the sum of the cumulative utility of the
nodes that represent economic cost; the effectiveness is obtained in the same way.
After computing the cost and effectiveness of each strategy, it is possible to perform
a cost-effectiveness analysis to rule out the dominated strategies and to find the
incremental cost-effectiveness ratios (ICERs).
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Figure 4.4.: Aggregate value of the variable Life years over time.

4.4. Overcoming the Markov property

A common criticism of Markov models is their inability to model patient history
in a natural way due to the Markov property (also called Markov assumption).
In real life, transition probabilities depend strongly on the time elapsed since a
certain event. For example, the probability of death increases with time for patients
suffering from cancer or AIDS. Sometimes it is the number of certain events that
affects transition probabilities: for example, the probability of death is higher after
recurrence of cancer or for subsequent myocardial infarctions. This section explains
how MPADs can represent patient history without the modeling tricks typically used
in Markov models.

4.4.1. Representing time-dependency

In some medical problems the transition probabilities depend on how long the patient
has been in a certain state. For example, the longer an HIV patient has had a
low CD4 count (state B), the higher the probability of developing AIDS (state
C) or dying (state D). In order to represent the increasing transition probability,
Chancellor’s model can be refined by dividing state B into three sub-states: B1,
B2 and B3, such that B1 means that the individual just entered state B, B2 that
he entered state B in the previous cycle and B3 that he has been in state B for
at least two cycles. States B1 and B2 are called tunnel states because they can be
visited only in a fixed sequence, analogous to passing through a tunnel Sonnenberg
and Beck (1993) : even if an individual is still in state B (low CD4 count without
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AIDS), he will necessarily transition from sub-state B1 to B2 or from B2 to B3, as
shown in Figure 4.5.

Figure 4.5.: A refined transition diagram for Chancellor’s model. Sub-states B1,
B2 and B3 indicate how long the patient has been in state B. B1 and B2 are called
tunnel states because the patient cannot be in them for more than one cycle.

An alternative to using tunnel states is to represent the state with two variables:
one for the clinical state—having four values or states: A, B, C and D, as in the
original model—and the other for indicating how long the patient has spent in the
current state. Implementing such a model in a spreadsheet would be complicated
(even after discretizing the numeric variable representing time into a finite set of
intervals), because spreadsheets cannot represent multidimensional matrices in a
natural way. For this reason, when Hawkins et al. (2005) built a Markov model for
the treatment of epilepsy and wanted to reflect the decrease in the probability of
treatment failure over time, they used R instead. In contrast, it is easy to build an
MPAD having one variable for the clinical state and another one for the time spent
in the current state. The auxiliary variable State change [1] tracks whether there
has been a transition in cycle 1. The link from Time in current state [0] to State [1]
implies that transition probabilities do not only depend on the therapy type, but
also on the time spent in current state. In this case, only the transitions from state
B to state C or D will depend on the time spent in the current state.

A variable, such as Time in current state, that contains information about the
history of the individual is called a memory variable. Memory variables allow the
model to satisfy the Markov property, as the transition probabilities only depend on
the variables that describe the current state, while rebutting the widespread notion
that Markov models do not have memory.

Another way to encode time dependency is to use parametric survival models, which
can be fitted to data using statistical techniques. These models learn a probability
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density function f(t) from data, whose associated cumulative density function is
F (t) = P (T ≤ t). We define the survivor function S(t) as the probability of surviving
for a period of time greater than t, and therefore as the complement of the cumulative
density function:

S(t) = P (T > t) = 1− P (T ≤ t) .

Transition probability between time-points t − u and t is calculated using the fol-
lowing formula:

tp(tu) = 1− S(t)/S(t− u) .

The most used probability distributions are Weibull Weibull (1951) and Gompertz
Gompertz (1825). According to Gray et al. (2011), the Gompertz distribution is
often used to model fatal events, whereas the Weibull distribution is used to model
the distribution of non-fatal events.

4.4.2. Representing past events

In some cases transition probabilities depend on the number of times an event has
occurred in the history of an individual. For example, a more up-to-date model for
HIV should allow backward transitions from state C (AIDS) to A or B, due to the
efficacy of modern treatments; transition probabilities could depend on how many
relapses the individual has had (defined here as transitions to state C). As in the
previous example, this problem might be modeled by multiplying the number of
states, such that they do not only represent the current health condition, but also
the number of relapses, as shown in 4.6.
An alternative approach would be to have one variable representing the clinical state
and another one representing the number of relapses. Again, it would be difficult to
implement that model in a spreadsheet, even after discretizing that variable into a
finite number of intervals, but the implementation as an MPAD is straightforward.

4.5. Probabilistic sensitivity analysis with MPADs

As explained in Section 2.3.1, the objective of sensitivity analysis is to analyze how
the uncertainty in the input parameters and translates into uncertainty over the
outputs of interest and therefore into decision analysis. Probabilistic sensitivity
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Figure 4.6.: An alternative refinement of Chancellor’s model that includes back-
ward transitions. The subindex of a state indicates the number of relapses, i.e.,
the number of times the patient has transitioned into state C; subindex 2 means
that the patient has had AIDS at least twice.

analysis (PSA) is a special type of sensitivity analysis where some point estimates
are replaced by probability distributions.
Probabilistic sensitivity analysis might be encoded in MPADs by introducing proba-
bility distributions in the potentials, instead of numerical values. Transition proba-
bilities as well as utility functions may be assigned different probability distributions
including Beta, Gamma, Dirichlet, Normal, and Triangular distributions, as shown
in 4.7. In order to account for parameter correlation, when covariance relationships
of parameters are known, such as in regression frameworks, the Cholesky decom-
position is used. If known, the Cholesky decomposition can be specified or else
calculated from the covariance matrix. The Cholesky decomposition provides cor-
related samples from a multivariate normal distribution.
Each simulation in PSA results in an estimated cost and effectiveness for each of the
interventions, which differ from the results of other simulations due to the random
sampling from the probability distributions. Therefore, instead of representing each
intervention with a single point in the cost-effectiveness plane as in Figure 2.5, each
intervention is represented by a cloud of points, as shown in Figure 4.8, one point
for each simulation and intervention.
Expected value of information (EVI) analysis, which we explained in Section 2.3.1,
can also be performed using MPADs in OpenMarkov. In order to perform this
analysis, we need to specify the size of the population the intervention affects per
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Figure 4.7.: Assigning probability distributions to transition probabilities

Figure 4.8.: Cost-effectiveness plane for the HPV vaccine model, evaluated using
PSA.

year, the number of years the technology we are evaluating is going to be relevant,
and the discount rate to be used in the analysis. As can be seen in Figure 4.9,
expected value of perfect information peaks around the ICER.

4.6. Comparison of MPADs with other tools

In this section we compare MPADs with the main techniques for building state-
transition models and performing cost-effectiveness analyses. The current guidelines
for NICE technology appraisal includes only Microsoft Excel, TreeAge Pro, R or
WinBUGS as standard software packages NICE (2012).
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Figure 4.9.: Expected value of perfect information for the hip replacement model
Briggs et al. (2004).

4.6.1. MPADs vs. spreadsheets

Most state-transition models are implemented in spreadsheet applications (com-
monly Microsoft Excel). The main advantages of such applications are their general
availability, sparing the need to buy dedicated software, and the low level of expertise
needed to write (simple) formulas. But when the logic behind a transition proba-
bility or a utility function becomes complex, as it is usually the case in real-world
applications, the length and obscureness of formulas grow exponentially. The use of
indirect references to cells in the spreadsheet rather than the use of meaningful vari-
able names makes complex formulas much harder to understand than the equivalent
source code in a high-level programming language, such as Java or C++. Besides,
implementing sensitivity analysis usually requires writing macros in a high-level
programming language (such as Visual Basic for Microsoft Excel), therefore requiring
programming skills.

For a modeler, the main drawback is the need to encode the structure, the parame-
ters and the code for the evaluation of the model in the form of tables and formulas
(or macros), which cannot be reused from previous models. Encoding a model and
its evaluation in a spreadsheet, in addition to demanding a considerable effort, is a
process prone to errors, which are especially hard to detect. In fact, we detected
bugs in two of the four spreadsheet models whose results we tried to replicate with
MPADs, even though their authors were experienced decision analysts. Fortunately
the impact of those mistakes was irrelevant, but there are notorious examples of bugs
in spreadsheet models that led to wrong conclusions Herndon et al. (2013); Baggerly
and Coombes (2009). In contrast, OpenMarkov’s source code is periodically tested
using modern software-engineering techniques and tools, and errors while using a
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graphical user interface are more unlikely and easier to spot than when writing
formulas.
For an evaluation agency, the main advantage of a model implemented as a spread-
sheet is that the same file contains the model, the code and all the numerical re-
sults of its evaluation, thus making tracing its execution step by step possible. On
the other hand, spreadsheet models usually include complex formulas and several
macros. Without a close collaboration with the modeler, it is usually very compli-
cated to decipher the logic implicit in obscure formulas which might even encode
structural assumptions. This makes model validation time-consuming and prone to
error. In contrast, MPADs are more transparent because their causal graphs clearly
show the structural assumptions and because the model can be inspected without
reading a single line of code.

4.6.2. MPADs vs. Markov cycle trees

Markov cycle trees are a particular type of decision trees in the same way as MPADs
are a particular type of PGMs. They both are based on graphs containing three types
of nodes: chance, decision and utility. The main difference is that in decision trees
the links outgoing from a node represent the values (states) of the corresponding
variable, while links in MPADs represent causal relations. In general, every variable
appears several times in the tree, and the number of branches grows exponentially
with the number of variables. For this reason many decision analysts find Markov
cycle trees inadequate for building large models. In contrast, in an MPAD each
variable can appear at most twice, which leads to much more compact models and
hence to the possibility of solving much more complex problems.
Additionally, when the characteristics of the model require to take patient’s history
into account, Markov cycle trees have two possibilities: to multiply the number of
states, as described in 4.4, or to use tracker variables. The first option leads to cum-
bersome models, just as when using spreadsheets. The second requires individual-
level simulation to evaluate the model, which entails an extra computing cost, as
described in 2.3.2.2, which make Markov cycle trees with tracker variables unafford-
able for large problems. In contrast, many MPADs having memory variables can be
efficiently evaluated with cohort analysis, as explained in 4.4.
With respect to the software tools, the main package for building Markov cycle
trees and performing cost-effectiveness analysis is TreeAge Pro, a mature commercial
product. Older programs, such as WinDM and SMLTREE, are no longer available.
OpenMarkov, in contrast, is still a research prototype, but in addition to supporting
MPADs and other types of PGMs, has the main advantage of being open-source,
which implies that it can be used for free, and also that its code can be inspected
and extended to address the user’s needs. TreeAge Pro offers many features that
are not available on OpenMarkov, but in turn the latter has many more features not
available in the former.
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4.6.3. MPADs vs. programming languages

Some state-transition models for cost-effectiveness analysis have been implemented
in C++, Matlab, R, Stata or a language in the BUGS family, such as WinBUGS, Open-
BUGS or JAGS. The main advantage of this approach is the possibility of building
virtually any model and any evaluation algorithm. The drawback is that, as in
the case of spreadsheets, everything must be programmed by the modeler, from the
combination of transition probabilities to the sensitivity analysis and the graphical
display of results. Statistical languages, such as R or BUGS, offer many validated
statistical functions which might not be available as libraries for languages like C++
and they are higher level programming languages with a milder learning curve. Nev-
ertheless, writing and debugging the code in such statistical languages requires an
expert modeler and a lot of time.
Building and evaluating an MPAD with OpenMarkov is much faster and easier, but
some models may require some features that are not yet available in this tool. In
some cases, extending OpenMarkov with such features will still be a smaller than
implementing the model in R or BUGS from scratch. However, as we are continuously
adding features, we believe this scenario will grow ever more unlikely in the future.
From the point of view of an evaluation agency, assessing the validity of a model
encoded in a programming language may be difficult and time consuming, especially
if the code lacks a good design, clear in-line comments and sufficient additional
documentation.
Finally, we should mention that BUGS is especially suited for health technology
assessment based on clinical trials because of its ability to integrate statistical in-
ference and cost-effectiveness analysis. This is something that currently cannot be
done with MPADs. An interesting line for future development is the integration of
JAGS (the most portable version of BUGS) and OpenMarkov, thus combining the
statistical power of the former for evidence synthesis with the facilities for model
building and analysis of the latter.

4.6.4. MPADs vs. discrete event simulation

The advantages and disadvantages of discrete event simulation (DES) over Markov
models have been extensively and passionately discussed in the literature Karnon
(2003); Caro (2005); Caro et al. (2007); Simpson et al. (2009). Most of the arguments
on this discussion are also valid when comparing DES with MPADs.
However, MPADs include some of the advantages of DES over Markov models,
such as the ability to use several variables to represent the evolution of the pa-
tient—including memory variables, as explained in Section 4.4— without the need
to resource to state multiplication; additionally, both DES and MPADs can handle
numeric variables with similar ease. MPADs also include some of the advantages of
Markov models over DES, such as the easiness to build, debug, and communicate
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the models. Another advantage of MPADs over both DES and Markov models is
the use of causal graphs, which facilitate the construction of the model, as the deci-
sion analyst can specify and modify its structure before addressing the quantitative
details. The causal graph also offer the evaluator an overall vision of the model,
with the possibility of focusing on a particular node to further analyze the relations
between the variables and the numerical parameters.
From the point of view of the computational cost, many MPADs—including all
those mentioned in this chapter—can be evaluated with cohort analysis, which is in
general more efficient than DES. The extra computational cost of DES might hinder
in some casesthe conduction of probabilistic sensitivity analysis Griffin et al. (2006).
There is a wide range of software packages available for DES, as it is used in a variety
of applications including engineering and finance. Arena®, a proprietary software,
seems to be the most widely used tool to build DES models for CEA Caro (2005);
Simpson et al. (2009). OpenMarkov has the advantage of being open source, as
explained when comparing it to TreeAge Pro, and that offers functionality especially
tailored for CEA, which, to the best of our knowledge, no DES software does.
DES is especially useful to model many entities that interact between them and with
a set of constrained resources; for example, several beds in an emergency service to
be occupied by patients who arrive over time. However, if the model does not include
such special requirements, the disadvantages of DES—such as the complexity, the
high number of required input parameters, and the higher computational cost—
outweigh its advantagesKarnon (2003); Griffin et al. (2006).

4.7. Conclusions
Markov processes with atemporal decisions are a new type of probabilistic graphical
model especially designed for cost-effectiveness analysis within the state-transition
modeling framework.
We have argued that most state-transition models implemented as spreadsheets or
decision trees can be built much more easily using MPADs. In particular, MPADs
can use memory variables to summarize the patient’s history without an explosion
in the number of states. They can also combine numeric and categorical variables in
the same model. These features make it possible to implement as MPADs complex
models that exceed by far the expressive power of spreadsheets.
For a modeler, building an MPAD and evaluating it with OpenMarkov is much easier
and faster than implementing it as a spreadsheet or a with a programming language.
In particular, its graphical user interface allows the modeler to save considerable time
and reduces drastically the probability of mistakes. In the case of complex models,
it is also easier and faster to build an MPAD than a Markov cycle tree.
For an evaluation agency, understanding and assessing the correctness of MPADs
is much easier than in the case of other representation techniques for two reasons:
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because MPADs are based on causal graphs that summarize the structure of the
model and because each model can be inspected separately from the source code
used to evaluate it.
With respect to computational efficiency, many MPADs—including all the examples
mentioned in this chapter that combine categorical and numeric variables—can be
evaluated with cohort analysis, which is more efficient than stochastic individual-
level simulation; this is an advantage over Markov cycle trees using tracker variables
and DES models. However, there are other types of problems for which DES or
dynamic transmission models are more adequate.
The main drawback of MPADs is that their applicability in practice is limited by
the features offered by OpenMarkov, the only tool currently available for building
and evaluating MPADs. However, this tool already offers advanced representational
features—such as the Weibull distribution and generalized linear models with frac-
tional polynomials, and the corresponding correlation matrices—as well as several
types of deterministic and probabilistic analysis. This tool in under active develop-
ment at the CISIAD (UNED) and new features are added when needed to address
new medical problems.
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We have defined a type of network that models the problem of finding the set of ad-
justments needed for the optimal performance of a system with tunable parameters.

5.1. Basic properties

5.1.1. Elements of the network

Tuning networks consist of a DAG and a probability distribution and can contain
decision and utility nodes. Decision nodes represent tunable parameters in tuning
networks. The values of these nodes can represent either setting the value of the
parameter to a certain value in absolute terms or to do it in relative terms, that is,
they represent the change in the value of the parameter (increase, decrease or no
change). In both cases, we define the term of the neutral state, for relative variables
as the "no change" value and for the absolute variables as the ideal value of the
parameter. Tuning networks also allow the definition of restrictions as described in
Section 3.1.1.

5.1.2. Interpretation of the network

A PGM representing the system described above has at least two possible interpre-
tations:
The diagnostic interpretation assumes that the optimal tuning is unique, i.e., there is
only one configuration of the parameters (the inputs) that makes the system perform
optimally. The three values of each variable are interpreted as {decreased, optimal,
increased}. The current output of the system is introduced as evidence into the
Bayesian network and the goal of inference is to diagnose which parameters are
not properly tuned. Therefore, inference proceeds down-up, i.e., from the observed
outputs to the inputs. This method has two advantages: first, it does not require a
global gain function, and second, inference is more efficient, because it evaluates the
network only once, while the variational interpretation need to evaluate the network
once for each change in one of the parameters.
The variational interpretation tries to predict the impact that a change in the value
of the parents (the causes or the inputs) will have on the children (the effects or
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the outputs). The three values of each variable, −, 0,+ are interpreted as {decrease,
no-change, increase}. Initially all the variables take on the value no-change by def-
inition. The process of inference consists of computing the posterior probability of
each output variable for each change that the user may impose on the input vari-
ables. Therefore, in this interpretation inference proceeds top-down, i.e., from (the
possible adjustments of) the inputs to the outputs, using predictive reasoning. The
changes that lead to an improved performance will be applied. When an improve-
ment in some of the output variables comes together with a worsening in others, it
is necessary to have a utility function that measure the global gain in performance.

5.2. The tuning model

The tuning model is an ICI model (see Section 2.1.4.1) that represents how change
in some variables (the parents) affects another variable (the child). The motivation
for the proposal of this new model is that, when building a PGM for programming
cochlear implants, we needed a model that could represent how changes in some of
the parameters of the physical device affect other properties of the system, which in
turn may affect the subject’s hearing performance. Given that none of the existing
models fitted our needs, we devised the tuning model.

5.2.1. Mathematical definition of the tuning model

A noisy ICI model is defined by three elements: the domains of the variables, the
function f , and some constraints on the values of P (zi | xi).

In the tuning model, all the variables have the same domain, −, 0,+, where “−”
represents a decrease in the value of the variable, “+” represents an increase, and
“0” means “no change”. If the variable is denoted by V , we will sometimes write
v−/v0/v+ instead of −/0/+ to make it clear what variable we are speaking of.

The function of the tuning model is defined as follows:

ftuning(z) =


y+ if n+(z) > 0
y0 if n+(z) = 0
y− if n+(z) < 0 ,

(5.1)

wheren+(z) is a function that returns the number of variables that take the value
+ in configuration z minus the number of those that take the value −. For exam-
ple, n+(z+

1 , z
+
2 , z

+
3 ) = 3, n+(z+

1 , z
−
2 , z

0
3) = 0, and n+(z+

1 , z
−
2 , z

−
3 ) = −1. Therefore,

ftuning(z+
1 , z

+
2 , z

+
3 ) = y+, ftuning(z+

1 , z
−
2 , z

0
3) = y0, and ftuning(z+

1 , z
−
2 , z

−
3 ) = y−.
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A constraint that we impose on P (zi | xi) is that

P (z0
i | x0

i ) = 1 , (5.2)

which implies that P (z+
i | x0

i ) = P (z−i | x0
i ) = 0. Therefore, if we introduce four

parameters for each link, c++
i , c+−

i , c−+
i , and c−−i , the CPT for that link has the

form shown in Table 5.1.

P (zi | xi) x−i x0
i x+

i

z+
i c−+

i 0 c++
i

z0
i 1− c−+

i − c−−i 1 1− c++
i − c+−

i

z−i c−−i 0 c+−
i

Table 5.1.: Conditional probabilty table for link Xi → Y in the tuning model.

It is possible to prove from Equation 2.16 that when all the Xs take the value 0,
then Y takes the value 0 with absolute certainty. When Xi takes the value + and
the otherXs take the value 0, then Y takes the value + with probability c++ and the
value − with probability c+−. Similarly, when Xi takes the value − and the other
Xs take the value 0, then Y takes the value + with probability c−+ and the value
− with probability c−−. Therefore, the four c-parameters quantify the individual
impact of Xi on Y .

5.2.2. Classes of interactions

We have seen that the general form of the conditional probability table associated
with linkXi → Y is as shown in Table 5.1. However, it is possible to impose a second
constraint for each variable Xi and each value of this variable, P (z+

i | xi) = 0 or
P (z−i | xi) = 0; put another way:

(c−+
i =0 ∨ c−−i =0) ∧ (c−+

i =0 ∨ c−−i =0) . (5.3)

Therefore, when this constraint holds for a link Xi → Y , only two parameters are
different from 0—in contrast with the general case, which requires four independent
parameters—and that link must belong to one of four classes: direct, inverse, always
increasing, and always decreasing.
The direct class is shown in Table 5.2. The values in the x0

i column are imposed by
the first constraint of the tuning model (Eq. 5.2). The x−i column implies that a
decrease in Xi causes a decrease in Y with a probability c−−i , such that c−−i > 0. It
may occur, with probability 1−c−−i , that a decrease inXi fails to cause a change inY ,
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but that decrease can never cause an increase in Y . Similarly, the x+
i column means

that an increase in Xi causes an increase in Y with a probability c++
i . Therefore, this

class represents a positive influence of Xi on Y Lacave et al. (2006) and a positive
correlation between both variables.

P (zi | xi) x−i x0
i x+

i

z+
i 0 0 c++

i

z0
i 1− c−−i 1 1− c++

i

z−i c−−i 0 0

Table 5.2.: Conditional probabilty table for a link Xi → Y of the direct class.

Similarly, the inverse class is characterized by c++ = c−+ = 0, c−+ > 0, and c+− > 0,
which implies that a decrease in Xi causes an increase in Y , and vice versa, thus
leading to a negative correlation between both variables.

The relations that define the always decreasing class are: c−+ = c++ = 0, c−− > 0,
and c+− > 0. Therefore, any change in Xi will cause a decrease in Y . The properties
of the always increasing class are analogous.

We may impose a third constraint: the symmetry of the influence. In the case of an
direct interaction, it implies that c++

i = c−−i , i.e., the probability that an increase in
Xi causes an increase in Y is the same as the probability that a decrease in Xi causes
a decrease in Y. In the case of an always decreasing interaction, the probability of a
decrease in Y is the same for an increase in Xi as for a decrease: c−−i = c++

i . A link
satisfying the condition of symmetry requires only one parameter.

Several kinds of interaction may coexist within the same family.

Example. In a family with four parents, the link X1 → Y might be general (i.e.,
free from the second and third constraints, as shown in Table 5.1), X2 → Y might
be a direct interaction, X3 → Y might be direct and symmetric, and X4 might
be always decreasing. The total number of parameters for this model would be
4 + 2 + 1 + 2 = 9.

If the interaction of this family did not use any canonical model, its conditional
probability table would require 35 = 243 parameters, but given that there are34 = 81
constraints among them, this family would require 243 − 81 = 162 independent
parameters. Obtaining those parameters from a database is unreliable, unless in
the case of a huge database, because many of the configurations of the Xs will not
be represented. Obtaining those parameters from an expert would be impossible in
practice not only for the amount of time required, but mainly because estimating
the probability of Y for each configuration of the Xs exceeds by far the cognitive
capabilities of the human mind.
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5.2.3. Causal interpretation of the tuning model

In the tuning model Y represents a parameter of a system whose value depends on
the values taken on by other parameters, {X1, . . . , Xn}. Each auxiliary variable Zi,
associated with link Xi → Y , as shown in Figure 2.4, indicates whether a change in
Xi (from x0

i to x+
i or x−i ) has induced a change in Y : z+

i indicates an increase (from
y0 to y+) while z−i indicates a decrease (from y0 to y−).

The first constraint, given by Equation 5.2, means that when there is no change in
Xi, then there is no change in Y .

The second constraint, given by Equation 5.3, means that a change in Xi may
cause either an increase or a decrease in Y , but not both;\ this assumption seems
reasonable for some domains, but there might be others in which an increase (or a
decrease) in Xi sometimes produces an increase in Y and sometimes a decrease.

The function ftuning(z), given by Equation 5.1 , means that when some of the Xis
induce an increase in Y and others cause a decrease, the global effect depends on
whether there are more increases than decreases, or vice versa, or there is a tie.

The tuning model is used to build probabilistic networks in which each variable
represents a property of the system. In these networks, a node without parents
represents a physical parameter that can be adjusted by the user, while a node Y
with parents {X1, . . . , Xn} represents a parameter or a property of the system whose
value depends on other parameters (its parents).

5.2.4. Inference with the tuning model

Inference on the tuning model can be done either with exact or stochastic inference
in quite different ways:

Exact Inference Using exact inference, conditional probabilities of the tuning
model are obtained by marginalizing out the Zis as in Equation 2.12. The com-
putational cost of exact inference is O(exp(n)) where n is the number of parents.

Stochastic inference In stochastic inference a sample is picked randomly for each
variable. In order to pick a sample from the tuning model, one could first calculate
the conditional probability as in exact inference and pick a sample from that proba-
bility distribution, but it is much more efficient to pick a sample for all the Zis and
then calculating y = f(z), f function in Equation 5.1. The computational cost of
stochastic inference is O(n) where n is the number of samples.

81



Chapter 5 Tuning networks

5.3. Construction of a tuning network

The construction of a tuning network for the tuning of a physical system begins
by selecting the variables. Some of them will represent variations in the parame-
ters of the system. The domain of each of these variables will be {−, 0,+}, which
implies a discretization of a continuous variable. The value 0 might indicate that
the value of the parameter has not changed at all, and −/+ might represent any
increase/decrease in its value, no matter how small it might be. However, in prac-
tice it is better that 0 indicates “no significant change”, − represents a significant
decrease and \ + represents a significant increase. It is the knowledge engineer, in
collaboration with human experts, who must determine what constitutes a signif-
icant change. For instance, the threshold might be ±5% of the absolute value of
the parameter represented by the variable; for a different variable tuned with higher
or lower precision the threshold might be ±2% or ±10%, respectively This thresh-
old might be different for each variable in the network, but it must be very clearly
defined, because it will affect the elicitation of the conditional probabilities.
The second step in the construction of a tuning network is to draw causal links
between the variables, which is usually the easiest task in the construction of the
network.
The third step is to analyze for each family in the tuning network the possibility of
applying a canonical model. The conditions for applying an OR, a MAX, a MIN,
or an XOR model are discussed in Díez and Druzdzel (2006), while the conditions
for applying a tuning model have been described in the previous section.
The fourth step is to obtain the numerical parameters, i.e., the conditional proba-
bilities for each family in the Bayesian network.

5.3.1. Elicitation of a tuning model

The first thing to do when considering to apply a tuning model to a relation in a
family is to check whether the requirements are met. The first condition for applying
a tuning model is that all the variables involved in the family must have the same
domain: {−, 0,+}. The second condition is that the effects of the parents can be
combined by applying the function ftuning defined in Equation 5.1, which basically
states that each change in one of the Xs may produce an increase or a decrease in
Y , and the resulting value of Y depends on whether there are more increases than
decreases, or vice versa, or there is a tie. The third condition is that the increase or
decrease produced by each Xi only depends on the value taken by this variable, not
on the values of the other Xs; this condition seems difficult to assess for a human
expert because in fact the individual effects are combined by the function ftuning, and
consequently it is difficult to think of the individual effects “before” being combined.
Therefore, it is reasonable to give the third condition for granted and assume that
the tuning model can be applied whenever the first two conditions hold.
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Once we know we can apply the tuning model, the next thing to do is to obtain
the numerical parameters, i.e., the conditional probabilities for the family. In the
tuning model, each link Xi → Y must be analyzed independently of the others. The
first question is: “Does the second constraint, given by Equation 5.3, hold for this
link, or is it possible that the same change in Xi sometimes causes an increase in
Y and other times a decrease?” In the latter case it will be necessary to obtain
four parameters: c++, c+−, c−+, and c−−. However, some of the parameters might
coincide; for example, using causal knowledge we might state that c++ = c−− and
c−+ = c−+ (assumption of symmetry). This would reduce the number of independent
parameters to be estimated.
On the contrary, if the second constraint holds, the next question to be asked is:
“What class of interaction is this: direct, inverse, always increasing, or always de-
creasing?” (see Sec. 5.2.2). The last question is about symmetry. For example,
in the case of a direct interaction, the question is: “Does a decrease in Xi cause a
decrease in Y with the same probability that an increase in Xi causes an increase in
Y ?” If there is symmetry, we only need to elicit one parameter; otherwise, we need
two.
Then, we have to estimate the numerical value(s) of the parameter(s) of each link.
The question to be asked for each parameter can be derived from the comment in
the last paragraph of Section 5.2.1. For example, the question for parameter c++ is:
“What is the probability that an increase in Xi causes an increase in Y when there
is no change in the other parents of Y ?” The questions for the other parameters are
analogous.
Finally, we must consider for that family whether a noisy tuning model suffices or
it is necessary to apply a leaky tuning model. The question is: “Is it possible that a
change in some of the physical parameters not explicitly represented in the Bayesian
network causes a change in Y ?” If the answer is affirmative, the question: “What is
the probability that they cause an increase in Y (when none of the explicit parents
changes)?” will give us an estimate for the leak parameter c+

L . The question: “What
is the probability that they cause a decrease in increase in Y ?” will yield c−L .

5.3.2. Conditioned interactions

It may occur in practice that the effect of a certain variable—say X1—on Y depends
on the value of a third variable, C. For example,X1 may represent a change in the
value of a physical parameter (an increase or a decrease) while C represents the
absolute value of that parameter. In this situation we can apply a modeling trick
consisting of adding an auxiliary variable A1, as shown in Figure 5.1. The interaction
between A1 and Y is given by the identity matrix: P (a1 | y) = δa1,y, where δ is
Kronecker’s delta function; put another way, the link A1 → Y is a deterministic
symmetric direct interaction (see Table 5.2) with c−−i .
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Figure 5.1.: Conditioned interaction: the effect of X1 on Y depends on the value of
variable C. The combined effect of X1 and C is modeled by the auxiliary variable
A1.

Table 5.3 shows with a hypothetical example how the effect of X1 on Y may depend
on a conditioning variable, C. When the value of C is low, the interaction is bottom-
up and symmetric: in 90% of cases, a decrease in X1 causes a decrease in Y , and vice
versa. When C =medium, the interaction is also bottom-up and symmetric, but the
effect is qualitatively smaller, i.e., it occurs in a lower proportion of cases. When C
= high, the effect of a change in X1 is unpredictable: it may cause an increase in Y
but it may also cause a decrease, and the variability is asymmetric: it is higher for
an increase in X1 than for a decrease.

C = low C = medium C = high
P (ai | xi) x−i x0

i x+
i x−i x0

i x+
i x−i x0

i x+
i

a+
i 0 0 0.9 0 0 0.4 0.04 0 0.26
a0

i 0.1 1 0.1 0.4 1 0.6 0.68 1 0.67
a−i 0.9 0 0 0.6 0 0 0.28 0 0.07

Table 5.3.: Conditional probability table for the auxiliary variable A1.

5.4. Inference: finding a near-optimal strategy

As in influence diagrams, the goal of inference in tuning networks is to find the
optimal strategy. In the case of tuning networks, the optimal strategy is the set
of adjustments or changes in the tunable parameters that will maximize the global
expected utility of the model. As common inference algorithms for influence dia-
grams would be computationally unaffordable, we propose a greedy algorithm that
explores the space of possible strategies searching for the optimal strategy. The
algorithm can be divided in two parts: score and search.
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Search The algorithm performs a greedy search over the space of possible strate-
gies. The search space is limited by link restrictions, described in Section 5.1.1. The
search is initialized setting all policies for all decision nodes to the neutral state.
The greedy search then looks for the single change in a decision node’s policy (also
referred to as an adjustment) that maximizes the utility. After changing the policy
for that node, it repeats the search for the next change that will maximize the utility.

Score The computation of the score is the computation of the global expected
utility given a certain strategy. In this case, the computation of probabilities and
utilities uses the same algorithms as influence diagrams.

Algorithm 2: Search for near-optimal strategy
Data: Set of decision nodes, PGM
Result: Set of adjustments
set the imposed policies of all decision nodes to the neutral state;
find best adjustment;
while there is a better adjustment do

add current best adjustment to result set;
add current best adjustment to imposed policies;
find best adjustment;

end

5.5. Discussion

The tuning model arose from a need encountered when building a Bayesian network
for real-world problem: the programming of cochlear implants. In this domain of
application, it soon became clear that the diagnostic approach was inappropriate,
hence we decided to use the predictive approach positive results.
The fact that the tuning model arose from a real-problem is a difference with some
of the canonical problems proposed in the literature, which came out from mathe-
matical speculation and have never been implemented on a software tool nor used
in practice.
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6. Cost-effectiveness analysis with
MPADs

6.1. Cost-effectiveness of PleurX® vs. talc

6.1.1. Background

Malignant pleural effusions (MPE) are common among oncologic patients. The me-
dian prognosis for patients with MPE is poor (3 to 6 months) and it causes pleuritic
pain and dyspnea, leading to a reduced quality of life. Conventional treatment op-
tions of MPE include thoracentesis, thoracoscopic chemical pleurodesis with talc,
and placement of a long-term indwelling catheter. Thoracentesis, the removal of
fluid from the pleural space, is effective in relieving acute symptoms but has a 98-
100 recurrence rate at 30 days (Neragi-Miandoab, 2006). Pleurodesis, the procedure
to artificially obliterate the pleural space, leads to effusion resolution and prevents
its recurrence. Previous studies have concluded that chest tube insertion using talc
as sclerosing agent is effective in achieving pleurodesis, but it requires hospitaliza-
tion, it is usually painful, and can be fatal (Kennedy and Sahn, 1994; Dresler et al.,
2005). Long-term indwelling pleural catheters, which may be placed in an outpa-
tient setting and are less invasive, have been used to treat MPE for more than a
decade with positive outcomes (Putnam et al., 2000), but are slower in achieving
pleurodesis and have a higher complication rate (Dresler et al., 2005; Tremblay et al.,
2007).
The objective of the current study is to analyze the relative cost-effectiveness of
two common treatment options for MPE: chest tube placement with talc and place-
ment of an indwelling pleural catheter, such as PleurX®, for home-based drainage
of effusions. Cost-effectiveness analysis is performed using a Markov process with
atemporal decisions (MPAD) —see Chapter 4. The evaluation of the MPAD re-
sults in the estimation of the quality-adjusted life years (QALYs) and costs derived
from both treatments in order to determine the incremental cost-effectiveness of the
PleurX® treatment.
This analysis is the result of the collaboration with Dr. María José Roca, a medical
specialist in thoracic surgery at the Hospital Universitario Virgen de la Arrixaca
in Murcia and associate professor in the Department of Thoracic Surgery at the
University of Murcia Medical School. She proposed this research and acted as the
expert in the elicitation process.
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Figure 6.1.: State transition diagram for patients with MPE

6.1.2. Description of the model

The target population of the analysis are patients with any type of cancer and
recurrent MPE. We assume that the diagnosis of MPE has been established at the
time of the intervention, that both treatments have no statistically significant effects
on mortality, and that all effects are expressed in terms of patient’s utilities achieved
through relief of symptoms. The model was built from a health provider perspective.
A previous atemporal model built by Olden et al. (Olden and Holloway, 2009) for
the cost-effectiveness analysis of talc and PleurX® was used as inspiration for our
model. Instead, we built a state transition model encoded as an MPAD.

6.1.2.1. States and transitions

We assume that patients are in one of the states shown in the transition diagram
illustrated in Figure 6.1. Effusion is the initial state, as patients enter the model just
after diagnosis. At the end of each cycle, a patient can either stay in the effusion
state or progress to one of the other states: if the treatment is successful achieves
pleurodesis, the patient progresses to resolved; if there is a complication related
to the treatment, the patient might progress either to infected or dead. Infection
and death were the only complications included in the model—the former because
it was the most frequent complication and the latter for its impact. A patient in
the infected state might progress to resolved if pleurodesis is achieved or to effusion
otherwise. Patients in the resolved state will remain therein until death. Finally,
patients in any other state might transition to the dead state. Due to the short life
expectancy after diagnosis, we set the duration of each cycle to a week.
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Figure 6.2.: Concise representation of the structure of the MPAD, containing the
relevant variables of the model.
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6.1.2.2. Structure of the MPAD

In order to build the MPAD, we first built the causal graph shown in Figure 6.2.
The Treatment variable represents the decision over which treatment to apply and
has two values: pleurX and talc. The Patient state temporal variable represents
the state of the patient at each cycle, and has the a value for each state of the
transition diagram described in the previous section. Time in treatment keeps the
count of the time passed since the beginning of the treatment, since it is relevant
for example, for the probability of pleurodesis at each cycle. The amount of liquid
evacuated through the catheter will also change over time, decreasing as the time
passes, and therefore the frequency of drainage will also decrease. The variable
Pleurodesis determines whether the patient achieved pleurodesis in that cycle, or put
it with other words, if the effusion was resolved in that cycle. The temporal variable
Complication determines whether the patient has a complication in a particular
cycle. Similarly, Death (cancer) represents whether the patient dies of cancer in a
particular cycle. In treatment is an auxiliary variable that keeps track of whether
the patient is still under treatment. The rest are utility nodes: the temporary QoL
utility node represents the quality of life of the patient and the rest represent the
various costs incurred throughout treatment.

6.1.2.3. Quantitative information

Table 6.1 contains the list of numeric parameters (probabilities and utilities) used
in the model, along with their source and the range used in one-way sensitivity
analysis, for those parameters for which sensitivity analysis was carried out.

Probabilities Given that all the consulted sources reported total rates, we had to
calculate weekly transition probabilities from the reported rates and the length of
treatments. Whereas in (Olden and Holloway, 2009), all patients were assumed to
live exactly as long as their life expectancy, we modeled the mortality rate of patients
(the probability potential of Death (Cancer)) with a Weibull distribution (Weibull,
1951). With the help of an expert clinician, we estimated the shape parameter of
the distribution to be equal to 3 and calculated the scale parameter so that the
median of the distribution would match the assumed life expectancy, which for the
base case is 6 months (26 weeks). Figure 6.3 shows the weekly mortality and the
cumulative survival during the first year after diagnosis for a cohort with a that life
expectancy.
The probability for Pleurodesis depends on the type of treatment. Patients treated
with talc spend a week in the hospital and have a 0.8 probability of pleurodesis
or effusion resolution within a week. On the contrary, patients treated with an
indwelling pleural catheter do not usually achieve pleurodesis so early. Instead,
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Table 6.1.: Model parameters

Variable Treatment Estimate Range Source

Probabilities

Pleurodesis Talc 0.8 0.62-0.91 (Olden and Holloway, 2009)
PleurX® 0.43 0.21–0.70 (Tremblay and Michaud, 2006)

Pleurodesis after infection Talc 0.9 (Olden and Holloway, 2009)
PleurX® 0.65 (Olden and Holloway, 2009)

Complication Talc 0.015 (Dresler et al., 2005)
PleurX® 0.075 0.02–0.13 (Tremblay and Michaud, 2006)

Infection, given complication Talc 0.333 (Tremblay and Michaud, 2006)
PleurX® 0.9999 (Olden and Holloway, 2009)

Death, given complication Talc 0.667 (Tremblay and Michaud, 2006)
PleurX® 0.0001 (Olden and Holloway, 2009)

Utilities

Effusion resolved 0.599 (Nafees et al., 2008)
Effusion not resolved 0.473 (Nafees et al., 2008)

Under treatment Talc 0.4 (Olden and Holloway, 2009)
PleurX® 0.58 0.56-0.59 (Liem et al., 2008)

Infection 0.4 (Olden and Holloway, 2009)

Costs

Admission Talc $4331 Medicare DRG
Admission for infection $9121 Medicare DRG
Home visit from nurse $94 (Olden and Holloway, 2009)
Visit with physician $110 (Olden and Holloway, 2009)
Placement of catheter PleurX® $2417 Medicare DRG
Catheter removal PleurX® $485 Medicare DRG
PleurX® supplies (10 boxes) PleurX® $750 Denver Biomedical, Inc.
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Figure 6.3.: Weekly mortality rate and cumulative survival for a cohort with a
26-week life expectancy following the Weibull probability distribution.

93



Chapter 6 Cost-effectiveness analysis with MPADs

Figure 6.4.: Conditional probability distribution of Patient state [1].

pleural liquid is drained every few days until the effusion is resolved. According
to (Tremblay and Michaud, 2006), pleurodesis is achieved in 42.9% of the patients,
the median time before catheter removal being 59 days. Even if we lack survival
data, we believe it is reasonable to assume pleurodesis with PleurX® also follows
a Weibull distributions where the probability density is highest around its median.
Therefore, we modeled the probability of pleurodesis with PleurX® using a Weibull
distribution with a shape parameter of 2 and a median of 8.42 weeks.

The probability potential behind Complication uses the probabilities in Table 6.1
to determine whether a patient develops a complication (infection or death) in that
cycle depending on the treatment. We assume complications only can happen in the
first cycle after the interventions. This is a simplification, given that patients treated
with PleurX® might develop a complication later in the treatment. We deem this
simplification assumable given that most complications, which are rare, happen at
the beginning of the treatment.

Figure 6.4 shows the probability potential of Patient state, which is considerably
simplified thanks to the Pleurodesis and Complication variables. If the patient is
alive (that is, she was not dead in the previous cycle and does not die in this cycle)
and in the effusion state, she might develop a complication, in which case she will
progress either to the infected or the dead state. If on the other hand, the patient
achieves pleurodesis in that cycle, she will progress to the resolved state. In any
other case, she will remain in the effusion state.

Utilities Effectiveness is measured in quality adjusted life years (QALYs). Each
state of the Markov model has a different quality of life, obtained from different
sources, as specified in Table 6.1. The exception to this rule is that patients in

94



6.1 Cost-effectiveness of PleurX® vs. talc

the effusion state have a different utility depending on whether they are under
treatment or not. We could not find in the literature any estimate of quality of life
with PleurX® measured on a preference-based scale. Following the decision taken
by (Olden and Holloway, 2009), we used the EQ5D score measured for patients with
peritoneal dialysis (Liem et al., 2008) as an approximation.

Costs are calculated in 2014 USDs and using US prices. The cost of the initial
intervention, i.e., the placement of the catheter or the chest tube, was estimated
using Medicare outpatient facility rates CPT 32550 (“Insertion of indwelling tun-
neled pleural catheter”) and Medicare DRG 188 (“Pleural effusion w/o CC/MCC”)
respectively. The cost of infection was estimated using Medicare DRG 186 (“Pleural
effusion w/MCC”). For PleurX® patients, we assume that the catheter is removed
after a successful pleurodesis or if there has been a complication; the cost was ob-
tained from Medicare outpatient facility rates CPT 32552 (“Removal of indwelling
tunneled pleural catheter with cuff”).

An important assumption of the model, based on the experience of the expert, is
that patients under the PleurX® treatment complete drainage twice a week during
the first four weeks and once a week for the rest of the treatment. This assumption
is in line with that of (Puri et al., 2012), who assumes a weekly drainage for the
length of the treatment. The cost of PleurX® supplies, such as vacuum bottles,
was calculated from the price of 10 bottle boxes and obtained from (Olden and
Holloway, 2009). We also assumed that 50% of the patients with PleurX® would
receive home visits from a nurse to assist with each drainage, whereas the rest would
do it by themselves or with the help of their family. We believe this assumption,
which is also adopted by (Puri et al., 2012), to be a reasonable compromise between
common practice in many countries, such as Spain, where patients are instructed to
perform drainage at home, and the assumption that all patients will receive home
visits from a nurse. In the case of patients whose treatment failed, we assume nurse
visits to occur once per week. We analyze the impact of these two assumptions in
Section 6.1.4.2. Finally, we assumed that patients in both treatments would visit
the physician once a month. The costs of home visits from a nurse and monthly
visit to the physician were obtained from (Olden and Holloway, 2009).

All costs were corrected for inflation using the inflation calculator of the website of
the US Department of Labor1. We used the typical annual discount rate of 0.03,
which was converted to its weekly equivalent of 5.686 · 10−4 using the following
formula:

discount rateweekly = 52
√

(1 + discount rateannual)− 1 .

1http://www.bls.gov/data/inflation_calculator.htm
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Figure 6.5.: Utility function for the cost of PleurX supplies, assuming we need two
vacuum bottles during the first four weeks and only one thereafter.

6.1.3. Limitations

Our model has a number of limitations. Survival was modeled with a Weibull
distribution whose parameters were estimated by an expert; we could not perform a
statistical regression because of a lack of data. However, we think that the impact of
a possible imprecision is not significant because the two treatments analyzed in our
study do not affect survival, but only the quality of life. Another limitation is that
our model does not include the cost of medications or oxygen therapy for patients
whose treatment was unsuccessful, due to the complexity to calculate it. Finally,
utilities were not obtained from patients with malignant pleural effusions, but from
others in similar situations: patients with peritoneal dialysis (Liem et al., 2008) for
the utility of patients undergoing PleurX® treatment and patients with non-small
cell lung cancer (Nafees et al., 2008) for the rest. Further research on quality of life
of patients with MPE undergoing both treatments could improve the precision of
predicted effectiveness.

6.1.4. Analysis

The result of the analysis presents the estimated total costs and QALYs associated
with both treatments. Cost-effectiveness was assessed in terms of the incremental
cost per QALY gained using the PleurX® catheter treatment compared with talc
pleurodesis. All estimates were obtained as a result of the evaluation of the MPAD.

6.1.4.1. Base case analysis

The base-case analysis was performed assuming a six-month (26-week) life expectancy.
The time horizon was set to two years to make sure that only a negligible proportion
of the cohort remained outside the dead state by the time horizon was reached; given
that the cycle length was one week, we evaluated the model for 104 cycles.
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Figure 6.6.: Temporal evolution of the cohort for both treatments. Only states
effusion and resolved are shown for clarity.

Table 6.2.: Results of the cost-effectiveness analysis for the base case.

Treatment Cost Effect (w) Effect (y) Inc. Cost Inc. Effect ICER
Talc 5 562 15.078 0.290 - - -

PleurX 6 548 15.582 0.300 986 0.00967 101 914

Figure 6.6 shows the temporal evolution of the cohort for both treatments. Only
states effusion and resolved are shown for the sake of clarity, but given that only
a minimal portion of the cohort is infected, we can assume the missing proportion
of the cohort is in the dead state. It is visible how most patients treated with talc
achieve pleurodesis and therefore progress to the resolved state after the first week,
whereas patients treated with PleurX® slowly achieve pleurodesis throughout the
first 15 weeks.
Table 6.2 provides the results of the cost-effectiveness analysis for the base case.
The treatment with PleurX® results in 0.00967 QALYs more than talc but at an
extra cost of $986, resulting in an ICER (see Section 2.3.1) of $101 920/QALY,
considerably above the cost-effectiveness threshold, which is assumed to be around
$50 000/QALY in the USA (Grosse, 2008).

6.1.4.2. Sensitivity analysis

We performed one-way sensitivity analyses for those parameters showing the highest
variability in the literature. We also analyzed the model varying our assumptions
in order to assess the impacts of such assumptions in the results of our analysis.
Patients diagnosed with malignant pleural effusion usually have a short expected
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Figure 6.7.: Evolution of the ICER for patients with an expected survival ranging
from 1 to 52 weeks.

survival but there is great heterogeneity depending on cancer type and other fac-
tors(Clive et al., 2014; Tremblay and Michaud, 2006). We performed a one way
sensitivity analysis evaluating the model with patients with expected survival rang-
ing from 1 week to a year. In this analyses, shown in Figure 6.7, PleurX® dominates
talc (i.e., it is more expensive and less efficient) for patients with an expected sur-
vival shorter than nine weeks. PleurX® can be considered cost-effective (the ICER
is below $50 000/QALY) when expected survival is thirteen weeks (around three
months) or less.
Reported rates of pleurodesis with talc range from 0.62 (Shaw and Agarwal, 2004) to
0.91 (Kennedy and Sahn, 1994). The ICER of PleurX® vs. talc increases significantly
as the rate of effusion resolution increases (see Figure 6.8). Eventually talc dominates
PleurX, but only at an unlikely rate of 0.95.
In Section 6.1.2.3, we mentioned that the we could not find in the literature an
estimate of the quality of life with PleurX®, we used that of peritoneal dialysis
as a surrogate. In order to assess the validity of this approximation, we analyzed
the impact of this parameter on the results of the CEA. This sensitivity analysis
(Figure 6.9) showed that talc pleurodesis dominates PleurX® if a utility lower than
0.553 is assumed and that the ICER is highly sensitive to small changes in the value
of this variable.
Finally, we analyzed the impact of our assumptions about the number of drainage
sessions per week for patients treated with PleurX® and the home visits from a
nurse to assist with the drainage. Following the advice of the expert, in the base
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Figure 6.8.: Evolution of the ICER of PleurX® vs. talc for different effusion reso-
lution rates with talc pleurodesis.
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Figure 6.9.: Evolution of the ICER of PleurX® vs. talc for different quality of life
scores for patients undergoing PleurX® treatment.
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Figure 6.10.: Evolution of the ICER for patients with an expected survival ranging
from 1 to 52 weeks with nurse visits, without them, and only 50% of patients
receiving visits (base case).

case we assumed that drainage sessions took place twice a week in the first four weeks
and once a week thereafter. However, (Olden and Holloway, 2009) assumes three
visits from a nurse per week to assist with the drainage, which implies three weekly
drainage sessions. On the contrary, (Puri et al., 2012) assumed a single drainage each
week and assistance from a nurse for half of the patients. Figure 6.10 shows how big
the impact of the home nursing visits to assist with the drainage is. For example, for
a patient with 6 months of expected survival, the ICER is $184 748/QALY with visits
and $19 080/QALY without them. We should note however that due to the lack of
data about the impact of home nursing visits on the quality of life, these ICERs
are only approximations. Similarly, Figure 6.11 shows how different frequencies of
drainage for patients treated with PleurX® impacts the ICER.

6.1.5. Conclusions

Treatment of malignant pleural effusions in patients with an expected survival of 6
months with the indwelling catheter PleurX® is slightly more effective than treat-
ment with talc and it entails a high increase in economic cost, with an ICER of
$101 914/QALY, above cost-effectiveness threshold. Treatment with PleurX® might
be cost-effective if the patient’s expected survival is thirteen weeks (ICER=$49 272/QALY)
or less, or if we exclude the cost of home visits from a nurse (ICER = $19 080/QALY).
The ICER of PleurX® increases over time because the talc treatment includes a high
initial cost (and low quality of life) derived from the chest tube insertion procedure
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Figure 6.11.: Evolution of the ICER for patients with an expected survival ranging
from 1 to 52 weeks assuming drainage sessions once a week (base case), twice a
week and thrice a week.

as well as hospitalization, but features low maintenance costs whereas PleurX® in-
curs in significant costs throughout the length of the treatment. Among the costs
included throughout PleurX® treatment, the price of vacuum bottles and home
visits from a nurse are the most important.
The novelty of our study with respect to previous cost-effectiveness analyses for MPE
(Olden and Holloway, 2009; Puri et al., 2012) is the use of a Markov model instead
of an atemporal model. Atemporal models are known to suffer from important
limitations: given their inability to represent the elapse of time, time to death was
assumed to be of a fixed length for all patients (instead of modeling is with survival
analysis techniques such as a Weibull distribution) and they were not able to model
the evolution of patients throughout time. Another improvement from previous
analyses is that we have incorporated recently published evidence into the model.
The conclusions of our study are in line with those of (Olden and Holloway, 2009)
and (Puri et al., 2012): PleurX® is cost-effective for patients with short expected
survivals (ranging from six weeks (Olden and Holloway, 2009) to three months (Puri
et al., 2012)) but not for patients with longer expected survivals (six (Olden and
Holloway, 2009) or twelve months (Puri et al., 2012)), but our results are more
precise because we explicitly calculated the ICER of PleurX® vs. talc as a function
of life expectancy, as shown in Figure 6.7. Given that expected survival is a major
factor in determining the cost-effectiveness of PleurX®, factors predicting survival
of patients with MPE should be considered when deciding upon which treatment to
apply. For example, based on median survivals reported in (Tremblay and Michaud,
2006), we could deduce that PleurX® is cost-effective for patients with non-small
cell lung cancer (median 108 days; 95% CI, 60 to 155 days) and for patients with
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ovarian cancer (median 95 days; 95% CI, 41 to 149 days) whereas it is apparently too
expensive for breast cancer (median 218; 95% CI, 132 to 303 days) and mesothelioma
patients (median 203 days; 95% CI, 162 to 244 days). Our analysis also concluded
that treatment of malignant pleural effusions with PleurX® might be cost-effective
for patients with longer expected survivals if costs were reduced by excluding home
visits from a nurse or due to a decrease in the price of vacuum bottles.
Our study has used pioneering artificial intelligence techniques for CEA, namely a
new type of PGM, called Markov process with atemporal decisions (MPAD) devel-
oped at the UNED and implemented in OpenMarkov, as explained in Chapter 4.
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6.2 Cost-effectiveness of mammography by risk factors for breast cancer

6.2. Cost-effectiveness of mammography by risk
factors for breast cancer

6.2.1. Background

Breast cancer is still an important health issue for its frequency and mortality.
It is the deadliest neoplastic malignancy for the female population. According to
GLOBOCAN 2012 (Ferlay et al., 2012), currently 232 714 malignant breast tumors
are diagnosed in the USA and around 367 090 in the European Union. Incidence of
breast cancer in Spain in 2012 was of 25 215 cases. The number of deaths caused
by breast cancer in 2012 was 43 909 in the USA, 91 495 in the European Union and
6 075 in Spain.
In 2006, the European Union recommended a biennial mammography for women
between 50 and 69 years (European Union, 2003). In 2009, the United States Pre-
ventive Services Task Force (USPSTF) updated its recommendations and proposed
to extend mammography to women aged 50 to 74 (U.S. Preventive Services Task
Force, 2009). However, mammography has its limitations and its effectiveness in
women under 50 is still under debate. There is no general consensus amongst in-
ternational medical organizations about the desirable age of start of mammography
screening.
According to some studies, the early detection of breast cancer using mammography
reduces mortality between 24% and 29% in women aged 50 or more (Castells et al.,
2007). However, a Cochrane review estimated the mortality reduction to be just
15% and the USPSTF estimated it to be around 16% (Gøtzsche and Nielsen, 2009).
Many studies are analyzing the customization of screening, since risk factors, such
as family history or genetic factors, along with undesirable side effects of screening
(such as false negatives, false positives, etc.) question the effectiveness of current
population-wide screening programs. For this reason there is a tendency to build
predictive models that might identify the most efficient scenarios and thus tailor
screening programs.
Cost-effectiveness analysis is a method to examine the trade-off between costs and
effects of alternative treatments. The effectiveness of treatments is evaluated in
terms of survival time and quality of life attributable to the treatment. The outcome
of any health intervention can then be calculated as the product of the increase in
utility that it may cause and the time over which it may be enjoyed.
Cost-effectiveness analyses of early detection of breast cancer in different countries
with different strategies have already been published. Results of these analyses show
that biennial screening through mammography improves quality of life in patients
and is cost-effective for women older than 50 years compared to other alternatives
(such as clinica l exams or selective screening) and, according to some studies car-
ried out in Brazil, Slovenia or Switzerland, it may be cost-effective even for women
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between 40 and 50. In Spain there are very few studies about this issue/problem. .
López Bastida et al. (2009) analyzed the cost-effectiveness of a program for the early
detection of breast cancer depending on age. Carles et al. (2011) carried out a study
in Catalonia, where optimal strategies for breast cancer screenings were estimated
using a stochastic model. On the other hand, the technical reports on population-
wide screenings in Spain (breast cancer included), elaborated by the Spanish agency
for health technology assessment (Agencia de Evaluación de Tecnologías Sanitarias)
provide information about the efficiency, effectiveness, and quality of the early de-
tection programs developed by the different regional health agencies.

6.2.2. Methods

A literature review was carried out to identify the most relevant publications on
the cost-effectiveness of mammography. The search was done in the PubMed and
MEDLINE databases, and completed by tracking the studies referenced in them.
The studies reviewed include those that analyzed the influence of risk factors on
breast cancer mortality and hence on the effectiveness of breast cancer screening for
different screening frequencies.
We built an MPAD, loosely based on the model developed by (Schousboe et al.,
2011) in the USA, which takes into account different risk factors such as age, breast
density, previous biopsies, and familiar history and analyzes the cost-effectiveness
of different frequencies (yearly, biennial, every 3-4 years or not at all). The model
was built and evaluated using OpenMarkov.

6.2.2.1. Structure of the model

Figure 6.12 shows the concise graph of our model.The decision on the frequency of
mammographic screening is represented by the atemporal variableMamm frequency.
The variable Age represents the age of the patient when she enters the model. It is
divided into four ranges: 40 to 49, 50 to 59, 60 to 69, and 70 to 79. Risk factors
are represented by chance variables: Breast density, Family history, and History of
breast biopsy. Breast density was classified into two levels according to the Breast
Imaging Reporting and Data System (BI-RADS). The higher the breast density, the
more difficult it is to detect signs of cancer using mammography and therefore the
less likely it is to detect cancer at an early stage. BI-RADS divides breast density
into four categories, where category 1 represents the lowest density and 4 the highest.
In our model, we divided these categories into two groups: low density (categories
1 and 2) and high density (categories 3 and 4). The variable Family history has
only two values, representing whether the patient has had a case of breast cancer
in the family or not. History of breast biopsy also takes two values depending on
whether the patient has had at least one positive biopsy in the past. As shown in
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Figure 6.12.: MPAD for breast cancer screening through mammography.
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Figure 6.13.: State transition diagram from the cancer diagram.

Figure 6.12, these three risk factors, together with Breast density, determine the
incidence of Invasive cancer.

The state of the patient is represented by the temporal variable State, which can take
six values depending on the patient’s current state: all patients start in the healthy
state; dcis, if ductal carcinoma in situ (DCIS) has been detected in the patient; a
patient diagnosed with invasive cancer, may be in local, invasive or distant states,
depending on the stage of the cancer at diagnosis; and finally dead, if the patient
has passed away, be it due to breast cancer or other causes. Figure 4.1 shows the
possible transitions between these states. It is worth noting that, once the patient
has entered a state of cance, she cannot transition to other states of cancer. This
simplification is motivated by the availability of data, or rather the lack thereof. We
have included four auxiliary variables in the MPAD to model transitions to different
stages: DCIS, Invasive cancer, Death (Cancer) and Death (OC). DCIS models the
transition from healthy to dcis. Invasive cancer models the transitions from healthy
or dcis to one of the states of invasive cancer. Death (Cancer) models the transition
from any state of invasive cancer to dead due to breast cancer, whereas Death (OC)
represents the transition from any state to dead due to other causes.

Age at diagnosis and Time since diagnosis are memory variables that modulate the
transition probabilities based on factors of the patient’s history.

The variable False positive represents the probability of a false positive occurring in
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a mammography.
Utility or value nodes model the cost of mammography (including the costs derived
from false positives), the costs of cancer treatment (which differ depending on the
stage of cancer found at the moment of diagnosis and on the stage of treatment),
and the health outcomes, measured in QALYs.

6.2.2.2. Numerical parameters

Diagnosis of DCIS The probability of a DCIS diagnosis was modeled based on
age-dependent rates reported by the Surveillance, Epidemiology and End Results
(SEER) of the National Cancer Institute (USA) (Howlader et al., 2011). We as-
sumed in our model that DCIS could be diagnosed in two ways: either through
mammography or, in the absence of mammography, by clinical examination. Ac-
cording to Schousboe et al. (2011), the relative risk of a DCIS diagnosis is of 1.393
for patients undergoing a periodical mammography and 0.34 for the rest.

Incidence of invasive cancer Schousboe et al. (2011) constructed an invasive can-
cer baseline risk equation from the SEER data as a function of age:

RateIC(Age) = −3.717·10−4 ·Age+9.9·10−6 ·Age2−6.53·10−8 ·Age3+4.1328·10−3.

Following Tice et al. (2008), we assumed that the relative risk of invasive cancer was
1.454 in the presence of a family history of breast cancer in a first degree relative
and 0.938 in its absence. We also assumed that the relative risks of invasive breast
cancer for a positive and negative history of prior breast biopsy are 1.495 and 0.906,
respectively. DCIS is also a risk factor for invasive breast cancer. According to
Ernster et al. (2000) and Kerlikowske et al. (2003)the risk of subsequent invasive
breast cancer for patients whose DCIS was discovered with mammography is less
than when when discovered by clinical examination. The relative risk for high
breast density was based on Schousboe et al. (2011). Finally, Schousboe et al.
(2011) calculated a relative risk of 1.9 for patients with DCIS diagnosed through
mammography and 3.4 for the rest.
Applying relative risks to probability potentials is not straightforward, especially
when numeric variables such as Age are involved in the calculation of the baseline
probability. The probability potential for Invasive cancer was encoded with two
exponential hazard potentials with log relative hazards, one for patients not being
screened and the other one for the rest, in order to accommodate different relative
risks for DCIS. In the exponential hazard potential with log relative hazards, the
log hazard is defined as a linear combination of explanatory variables. In this case,
the probability is calculated as:
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Figure 6.14.: Probability potential for incidence of invasive cancer.

RateIC = exp(log(RateIC(Age)) + log(RRbiopsy) + log(RRfamily)+
log(RRdensity) + log(RRDCIS))

P (+invasive cancer) = 1− exp(−RateIC)

Stage distribution of invasive cancer at diagnosis In our cost-effectiveness analy-
sis, the decision about mammography frequency mainly affects the stage distribution
of invasive cancer at diagnosis. Schousboe et al. (2011) reports stage distributions
according to age, mammography frequency and breast density (low or high). These
distributions represent the proportion of patients in each state at the moment of di-
agnosis and have been calculated from the Breast Cancer Surveillance Consortium
data. The proportion of patients diagnosed with local cancer is higher for patients
going through mammography every two years than that of patients having a yearly
mammography, as shown in Table 6.3t. It is also the case that the proportion of
patients diagnosed with distant cancer is lower in the former group than in the lat-
ter. This is probably caused by a selection bias, since patients were not randomly
assigned a mammography frequency; their physicians took that decision, probably
assigning a higher frequency to patients at higher risk.

Mortality from cancer Mortality from invasive cancer was calculated using SEER
data (Howlader et al., 2011), depending on the stage diagnosis and the time elapsed
since then, as the complement to the survival ratio. We assumed no cancer-related
mortality from DCIS.
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Table 6.3.: Cancer stage distributions according to age, mammographic frequency,
and breast density.

Breast density - Low High
Mammography frequency None 1 year 2 years 3-4 years 1 year 2 years 3-4 years

Age 40-49
Local 0.515 0.709 0.713 0.676 0.652 0.657 0.617

Regional 0.431 0.267 0.269 0.296 0.321 0.323 0.353
Distant 0.054 0.025 0.018 0.028 0.028 0.020 0.031

Age 50-59
Local 0.484 0.733 0.737 0.703 0.681 0.685 0.647

Regional 0.443 0.248 0.249 0.276 0.299 0.299 0.330
Distant 0.073 0.019 0.014 0.021 0.021 0.015 0.023

Age 60-69
Local 0.496 0.768 0.771 0.740 0.720 0.724 0.689

Regional 0.407 0.209 0.213 0.234 0.254 0.258 0.283
Distant 0.097 0.023 0.016 0.026 0.025 0.018 0.028

Age 70-79
Local 0.533 0.800 0.803 0.775 0.759 0.762 0.731

Regional 0.378 0.184 0.187 0.209 0.226 0.227 0.252
Distant 0.090 0.014 0.01 0.015 0.015 0.011 0.017

Mortality from other causes An all-cause mortality risk function created by Sc-
housboe et al. (2011) from 2003 death rates for all females in the USA (Arias, 2007)
was used to calculate transition probabilities from any state to dead:

Mortalityall cause = 1.2229 · 10−3 + 3.09 · 10−17 · Age8

Cost of mammography As an estimation for the cost of mammography we used
the reimbursement fee for 2D mammography screening of 135 USD established by the
Centers for Medicare and Medicaid Services (2014) . We considered false positives
due to mammography as an indirect cost of mammography. The mean cost of follow
up after receiving a false positive mammogram was reported to be 330 USD in 2005
(Tosteson, 2008); after correcting for inflation, it amounted to 400 USD in 2014.

Cost of cancer treatment We used the treatment costs reported by Yabroff et al.
(2008), based on cancer stage at diagnosis and stratified into clinically relevant
periods: initial period (first year) following diagnosis, continuing period (subsequent
years until the last year of life), and the terminal period (last year of life). These
costs have also been adjusted for inflation.

Health utilities We used the QALY values calculated in Schousboe et al. (2011),
which were based on Lidgren et al. (2007). Different health related values were
estimated for the different stages of invasive cancer (localized, regional, and distant)
and the time since diagnosis (first year after diagnosis and later years). These values
were then weighed using average QALY values for each age group.
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6.2.3. Analysis

Following Schousboe et al. (2011), we divided the range of age between 40 and 80 into
four 10-year periods. This was motivated by the variability of breast cancer incidence
and risk factors, such as breast density, changing over time.2 We analyze the cost-
effectiveness of different frequencies of mammography for each 10-year period to
allow for re-assessment of mammogram frequency. We ran our model four times,
for patients aged 40, 50, 60, and 70 respectively. The most naïve way to do the
analysis would have been to use a time horizon of 10 years for each run, but this
would considerably underestimate the benefits of higher mammography frequencies.
In order to model the health outcomes of each intervention more accurately, we
used a 100-year lifetime horizon. First, we ran the model for the oldest cohort,
with an average age of 70 years at the start of the model and a time horizon of
30 years. Assuming a cost-effectiveness threshold of $50 000/QALY (Grosse, 2008),
we registered the most effective mammography frequency that was cost-effective for
that age range. Then, we ran the model with a starting age of 60 and a time horizon
of 40 years, setting the mammography frequency between 70 and 80 to be the most
cost-effective as calculated by the previous evaluation. We would then proceed in a
similar fashion for cohorts aged 50 and 40. We performed this analysis for cohorts
with high and low breast density, with and without a family history of breast cancer,
and with and without a previous positive biopsy.
The results of the analysis can be seen in Table 6.4. The most cost-effective option
for each case is written in bold type. Yearly mammography is dominated by biennial
mammography in all age ranges. This is very likely a result of the selection bias in
the data from which we calculated the transition probabilities, which were gathered
through years of medical practice, not from a randomized controlled trial. There-
fore, instead of randomly assigning patients with a mammography frequency, their
physicians made that decision, probably assigning a higher frequency to patients at
higher risk.

6.2.4. Limitations

One of the limitations of our model is that it does not take all risk factors into
account, such as genetic mutations. In the presence of certain genetic mutations,
such as those in the genes BRCA1 and BRCA2, the optimal screening frequency
might be higher, and the optimal screening type might not be mammography. An-
other limitation is that, due to the nature of available data, our model is not causal
but observational, which might bias the results of our analysis. Another important
limitation is the lack of Spanish data to feed the model. This has prevented us to
adapt this model to the Spanish population and compare it with the results of other
studies done in our country.

2Over a 10 year period breast density will change significantly in only 10% of women
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Table 6.4.: ICER for different mammography frequencies according to age range,
breast density, family history, and history of biopsy.
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No Yearly Biennial Every 3-4 years

40-49

Low
No No base dom 118776 38441

Yes base dom 66136 15475

Yes No base dom 72152 18132
Yes base dom base dom

High
No No base dom 70802 42317

Yes base dom 33927 13756

Yes No base dom 7803 1692
Yes base dom 12422 base

50-59

Low
No No base dom 95789 173

Yes dom dom 36665 base

Yes No dom dom 40754 base
Yes dom dom 15761 base

High
No No base dom 36107 base

Yes dom dom 12819 base

Yes No dom dom 15367 base
Yes dom dom base dom

60-69

Low
No No base dom 66158 base

Yes dom dom 28669 base

Yes No dom dom 32389 base
Yes dom dom 10654 base

High
No No dom dom 30423 base

Yes dom dom 9477 base

Yes No dom dom 11917 base
Yes dom dom base dom

70-79

Low
No No base dom 158160 8443

Yes dom dom 81353 base

Yes No dom dom 88974 base
Yes dom dom 39452 base

High
No No base dom 74682 base

Yes dom dom 30831 base

Yes No dom dom 35180 base
Yes dom dom 6936 base
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6.2.5. Conclusions

Our analysis suggests that, contrary to common practice, the decision about the
frequency of mammography should be personalized on the basis of a woman’s age and
well-known risk factors, such as breast density, history of breast biopsy, and family
history of breast cancer. Assuming a cost-effectiveness threshold of $50 000/QALY,
a mammography every two years is the most cost-effective intervention in most
of the cases. However, a mammography every three to four years is the optimal
intervention for women aged 40-49 or 70-79 with a low breast density and with less
than two risk factors, and for those with a high breast density and no risk factors. It
is also the most cost-effective strategy for women of all ages with low breast density
and no risk factors.
The current analysis proves that MPADs are a powerful tool that can be used to
build very complex models. Even though we did not have access to the model by
Schousboe et al. (2011), which was implemented in TreeAge Pro, we can imagine
the tremendous effort necessary to build it, while our MPAD can be built in a few
hours. Building such a model with spreadsheets would have been almost impossi-
ble. Building it with R, STATA or BUGS would have required advanced programming
knowledge and many hours of coding and debugging. We also proved it is possi-
ble and fairly easy to apply relative risks, which are very popular amongst health
economists, when defining probability potentials in in MPADs.
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7. Cochlear implant programming

7.1. Fundamentals

7.1.1. Anatomy and physiology of the cochlea

The cochlea, the organ responsible for human hearing, is a spiral-shaped cavity in
the bony labyrinth inside the inner ear and is filled with nearly incompressible fluids.
Two membranes along the length of the cochlea divide it into three compartments:
Reissner’s membrane and the basilar membrane. On top of the basilar membrane,
the actual receptor organ for hearing (spiral organ or organ of Corti) is found.
It contains the auditory sensory cells responsible for converting mechanical waves
into electrical signals to be transmitted to the brain. These cells are called hair
cells because of their stereocilia, hair-like structures that respond to the mechanical
motion of the basilar membrane. There are two types of hair cells: inner hair
cells (IHC) and outer hair cells (OHC) which, despite their similarities, serve quite
different functions. It is the IHCs, that generate action potentials in the neurons of
the cochlear nerve that eventually deliver the perception of sound. The OHCs on the
other hand, act as local, frequency sensitive amplifiers, and they highly contribute
to the wide range of sound levels that the human ear is able to process and the high
frequency resolution it exhibits.

The place on the basilar membrane where there is a higher displacement depends on
the frequencies of the sound captured by the ear. This is caused by the mechanical
properties of the basilar membrane: it is relatively narrow (100 µm) and rigid at the
base but it becomes wider (up to 500µm) and less stiff towards the apex. There is also
a gradual increase from base to apex in the length of hair cells as well as a gradual
decrease in their diameter. These differences cause each frequency to be mapped
to a specific point on the basilar membrane that displaces maximally (Figure 7.1).
Maximal displacement of the basilar membrane happens nearer to the base of the
cochlea for higher frequencies and nearer to the apex for lower frequencies. Receptor
cells at the place of maximal displacement are stimulated the strongest. The spatial
distribution of the cochlea depending on its maximal frequency sensitivity is called
tonotopy.

113



Chapter 7 Cochlear implant programming

Figure 7.1.: A: schematic of basilar membrane displacement for pure tones of 2
frequencies f1 and f2 where f1 is lower than f2.. B: the tonotopy of the cochlear
is logarithmic, shifting an octave each 3mm.

7.1.2. Hearing loss

Hearing impairment is the most frequent sensory deficit among humans, affecting
more than 250 million people in the world. It is estimated that one child in a
thousand is born with severe to profund hearing loss. Consequences of hearing
impairment include inability to interpret speech, often provoking a reduced ability to
communicate, delay in language acquisition, economic and educational disadvantage,
social isolation, and stigmatization. Most congenital and childhood-onset hearing
losses follow from various disease and injury causes. The leading causes of adult-
onset hearing loss are age related hearing loss followed by noise-induced hearing loss.
The most common type of permanent hearing loss is sensorineural hearing loss and
its most common cause is damage to the structures within the cochlea. Cochlear
hearing loss not only reduces the ability to hear soft sounds, but also speech loud
enough may sound unclear, distorted, or muffled. Another common symptom of
cochlear hearing loss is that, while having a reduced audibility for soft sounds,
sounds at high levels are often perceived as having the same loudness as they would
for an unimpaired listener.

In general, cochlear hearing loss is related to damage to OHCs and/or IHCs. Their
stereocilia may be distorted or destroyed, or the cells themselves dead. OHCs are the
most vulnerable, and their damage results in a decreased amplification of soft sounds
and deterioration of the frequency selectivity. In a cochlea without functioning
OHCs, response thresholds are elevated due to decreased sensitivity. When the
IHCs are damaged, sensitivity is reduced, resulting in elevated detection thresholds.
When both IHCs and OHCs are severely damaged, sensitivity and tonotopical tuning
are greatly reduced.
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Figure 7.2.: Main parts of a cochlear implant. The external part, consisting of (A)
a speech processor (1) that can be worn behind the ear and a transmitter coil
(2). The internal part (B) comprises the receiver-stimulator (3) and the electrode
array (4), which is positioned in the inner ear (C).

7.1.3. Cochlear implants

Cochlear implants (CI) have become a viable treatment for individuals who suffer
from severe to profound hearing loss. A cochlear implant is an electrical device that is
surgically inserted into the ear and provides the user with a sense of sound electrically
stimulating auditory nerve cells. It consists of an internal part (Figure 7.2 B) which
is surgically implanted, and a removable external part (Figure 7.2 A) that is usually
worn behind the ear.

The external part contains a microphone, which captures sounds from the environ-
ment, and a speech processor, which converts these analogue sound waves into a
digitally coded signal and sends them via a radio frequency transmitting coil to
the internal part, a receiver-stimulator implanted under the skin. The receiver-
stimulator decodes the signals transmitted by the sound processor into an electrical
stimulation pattern that is delivered to the cochlea through its electrode array.

This array is positioned in the cochlea surgically and consists of a number of elec-
trode contacts (currently ranging from 12 to 22, depending on the manufacturer)
running along the length of the cochlea (Figure 7.2 C), which provide direct stim-
ulation of auditory nerve cells. In order to obtain a tonotopical organization for
electrical stimulation, electrodes are positioned along the length of the cochlea; each
electrode is responsible for conveying the sound at a certain frequency band. This is
accomplished by implementing a series of band-pass filters, each passing a portion
of the spectral input to their corresponding channel.
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Table 7.1.: Features of the ICF and parameters across manufacturers

Cochlear Advanced Bionics MED-EL Neurelec
EDR minimum T T THR Min
EDR maximum C M MCL Max
IMR T-SPL, C-SPL IDR - -
Input gain Sensitivity Sensitivity AGC Sensitivity Analog Gain
Output gain Gain Gain - Gain
Input compression Autosensitivity AGC AGC Compression Ratio -
Output compression Loudness Growth - Maplaw Compression Volume

7.1.3.1. Manufacturers

Four major CI manufacturers have commercially available systems in the European
market as per 2015. The market leader is the Australian company Cochlear Ltd., the
manufacturer of the Nucleus cochlear implant, the first to be approved by the U.S.
Food and Drug Administration (FDA). MED-EL is the Austrian CI manufacturer
founded by the scientists who developed the first micro-electronic multichannel CI.
Advanced Bionics’ (AB) headquarters have long been in California, but the company
has been acquired by the Swiss holding Sonova in 2009. Neurelec, the smallest player,
is located in France and has recently been purchased by the Danish William Demant
holding (Oticon Medical).

7.1.3.2. Parameters and intensity coding

Cochlear implant parameters determine how sound waves are converted into elec-
tric signals, also known as the intensity-coding function (ICF) (Vaerenberg et al.,
2014b). As electrodes are placed along the cochlea, they may face very different
conditions when targeting auditory nerve fibers for stimulation: the surviving neu-
ral population in the vicinity of specific electrode contacts, or the physical distance
to auditory nerve cells may vary considerably throughout the array. This is why
some parameters are adjustable per channel or electrode, whereas others affect the
behavior of the whole system. Even though the set of parameters varies across
manufacturers, they mainly define a set of features of the intensity coding function,
common to all manufacturers. These features and the set of parameters available in
different devices are summarized in Table 7.1 and described next.
The Electrical Dynamic Range (EDR) is defined as the electrical range between the
smallest detectable level (EDR minimum) and the maximum level that is still com-
fortable (EDR maximum). Both EDR minimum and EDR maximum are defined as
separate parameters whose name differs across manufacturers, as can be seen in Ta-
ble 7.1. All manufacturers offer a parameter to adjust the microphone sensitivity or
input gain, which is called Sensitivity in Cochlear and AB devices, AGC Sensitivity
in MED-EL, and Analog Gain in Neurelec. In addition, all manufacturers except
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for MED-EL give the chance to adjust channel gains, which are applied to the input
in Cochlear devices and to the output in AB.
Cochlear implants need to compress the acoustical range available (>100 dB) to
normal hearing into an electrical range that is an order of magnitude smaller (a
typical EDR is from 6 to 12 dB). This is usually accomplished by two stages of
compression: (1) a long term compression of the broadband input signal and (2) an
instantaneous compression of the band limited signal within each channel.
Long term compression of the broadband input is typically performed at the CI’s
front end processing stage (Input compression in Table 7.1). First, a range of sound
levels to be processed at any given time is defined: although different terms exist
for this range, in this dissertation we use the term Instantaneous Mapping Range
(IMR). Input compression adapts the overall sensitivity of the CI such that the IMR
is shifted based on environmental sound levels through Automatic Gain Control
(AGC) systems. The size of IMR is determined by IDR in AB devices and is fixed
in MED-EL and Neurelec (to 55 dB and 85 dB respectively), and its instantaneous
position determined in AB and MED-EL by AGC. In Cochlear, on the other hand,
T-SPL and C-SPL determine the lower and upper bounds of the IMR, thus defining
its size and position, but the position is also affected by microphone sensitivity and
Autosensitivity (similar to AB’s AGC).
Instantaneous compression (Output compression in Table 7.1) is performed within
every channel using highly compressive logarithmic mapping functions. The map-
ping function in all CI systems is approximately linear, but Cochlear, MED-EL, and
Neurelec provide an additional parameter to adjust the percentage of EDR that is
allocated to higher/lower intensity ranges, thus curving the function.
Finally, pulse width is configurable in AB and Cochlear devices, but with different
effects. In Cochlear, doubling the pulse width will cause the channel to deliver
twice the charge, whereas in AB it will remain equal as the pulse amplitude is
automatically decreased.

7.2. Cochlear implant programming

After surgical implantation, the parameters described above must be appropriately
adjusted for the individual. This process is called cochlear implant programming
or fitting, and its aim is to ensure that the electric pattern generated by the in-
ternal device in response to sound stimulation yields an optimal auditory percept,
both in terms of performance and comfort. Even if cochlear implants have been
available for more than 25 years and despite the general agreement that fitting is
crucial in obtaining good results (Shapiro and Bradham, 2012), to date there is nei-
ther well described and commonly adopted good clinical practice for this task nor
evidence-based materials to distinguish efficient procedures from less efficient ones
(Vaerenberg et al., 2014c).
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A set of values assigned to the parameters of a CI at a given point in time is called
a MAP1 or a program. Therefore, we could define CI programming as the search
for the optimal MAP. In fact, some also denote CI programming with the term
MAPping (Pedley et al., 2007).

Fitting is usually restricted to setting two basic psychophysical measures for each
electrode: the auditory threshold (T level) defined as the softest level at which the
patient is stimulated more than 50% of the time, and the most comfortable level
loudness level (M/C level), defined as the loudest sound that is still comfortable.
The two most popular approaches to threshold measurement are behavioral and
objective measures. Behavioral measurements are taken through interaction between
the audiologist and the patient: the patient is instructed to react when a sound is
audible for T levels and to express discomfort to set M/C levels. This might turn
to be a time-consuming task, especially in children.

Objective measures arose as a means to avoid the error introduced by the patient’s
subjective response, by measuring electrophysiological responses (neural or mus-
cular) elicited by a stimulus. Most popular objective measures include evoked
stapedius reflex threshold (ESRT) and (ECAP) and they provide the audiologist
with a confirmation of an audible stimulation level for a particular electrode. Many
studies have investigated whether objective measures could be used for predicting
T and M/C levels (Brown et al., 2000; Hughes et al., 2000). The general conclusion
of these studies is that such measures might be indicative of T and M/C levels but
there is no consensus on the usability of this information. While some claim cor-
relations are not strong enough to be used for fitting (Smoorenburg et al., 2002),
others defend the benefits of fitting implants with thresholds derived from ECAPs
(Botros and Psarros, 2010). According to Vaerenberg et al. (2014c), 59% of the CI
fitting centers that took part in the survey use ECAP measurements, mainly to set
the profile of T and M/C levels across the electrode array.

As part of the CI programming process, electrodes can be disabled or dropped by the
fitting expert if they are showing poor performance. Poor performance in specific
electrodes can be caused by the area of the cochlea where the electrode lays being
damaged or containing an unusually low population of functioning hair cells. As a
consequence of disabling an electrode, the frequency bands assigned to the rest of
electrodes stretch and shift, so that the whole spectrum is still covered.

This traditional approach to CI programming has remained essentially unchanged
since the beginning. Generally, it is oriented towards patient comfort and not mea-
surable performance (Vaerenberg et al., 2014c). Recently, some clinicians have ad-
vocated for setting and reaching measurable performance targets (Vaerenberg et al.,

1We decided to write MAP in capital letters in this dissertation for two main reasons: because
Cochlear Ltd., the original proponent of the term, and most of the scientific community use this
form and because we think that the documents produced by cartography would be a misleading
metaphor of the concept. For all we know, MAP might be an acronym whose meaning has been
lost.
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2014a; van der Beek et al., 2015), thus stressing the importance of cochlear implant
programming.

7.2.1. Measuring performance

Hearing performance can be divided into three categories: sound detection, discrim-
ination and identification. In test conditions, detection is measured by asking the
patient to react to any auditory stimulus. Discrimination tests measure the ability
to tell different sounds apart. Identification does not depend exclusively on the hear-
ing performance, but also on cognitive processes. The following tests are designed
to measure these three aspects of hearing.

7.2.1.1. Tone audiometry

The aim of tone audiometry (also called simply audiometry) is to find the auditory
threshold, defined as the lowest sound level detectable. The patient is presented with
a series of pure or warble tones of different loudness and asked to react to sound. The
test is repeated with tones centered at different frequencies distributed across the
spectrum covered by cochlear implants (usually 250, 500, 1000, 2000, 4000, 6000 and
8000 Hz) in order to measure the audiometric thresholds for different frequencies.
According to Skinner et al. (2002), sound threshold levels from 250 to 6000 Hz must
be below 30 dB for CI users to be able to perceive soft speech.

7.2.1.2. Phoneme discrimination

Phoneme discrimination is a special case of spectral discrimination (Govaerts et al.,
2006) that tests the patient’s ability to tell two phonemes apart. Phonemes are
presented at 70 dB in an oddity paradigm: one phoneme is presented repeatedly
(background phoneme) in fixed intervals and every now and then the background
phoneme is replaced by the other phoneme (stimulus phoneme). The patient is in-
structed to react to the stimulus phoneme. This test assesses the patient’s frequency
resolving power, which is one of the cochlea’s most important functions.

7.2.1.3. Loudness scaling

The loudness scaling test is performed using one-third octave narrow band noises
centered at 250, 1000 and 4000 Hz. A 1876ms stimulus is presented twice at each
level and scored on a visual analogue scale ranging from 0 (inaudible) to 6 (too loud).
Levels are randomly presented at 5dB increments between 30 and 80dB. Figure 7.3
shows the result of a loudness scaling test at 4000 Hz. Each dot represents the
loudness perception of the patient at different loudness levels. The loudness scaling
of a patient is deemed normal when all dots are inside the gray area.
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Figure 7.3.: The result of a loudness scaling test in Audiqueen©.

7.2.1.4. Speech audiometry

Speech audiometry tests the patient’s ability to correctly identify phonemes and
words. The test involves the acoustic presentation of a list of short CVC (consonant,
vocal, consonant) words; e.g., “dog”. The list of words is chosen as to cover the set
of phonemes in the patient’s language. Words are presented at different loudness
levels: 40, 55, 70, and 85 dB. Scoring is usually done based on percentages of
correctly guessed words and phonemes.

7.2.2. Previous applications of AI to CI programming

Since the commercial introduction of cochlear implants, there has been a few at-
tempts to apply artificial intelligence or machine learning techniques to fitting. For
example, (Chang et al., 2001) built and trained neural networks to mimic patients’
vowel recognition ability in order to simulate how their ability would change for
different values of a parameter. Unfortunately they did not verify whether CI users
showed similar improvements in vowel recognition as the trained neural networks.
Below we provide an overview of the most interesting attempts.

7.2.2.1. AutoNRT™

AutoNRT™ was developed by engineers in Cochlear Limited and presented as an
automated system to measure ECAP thresholds “via machine intelligence” (Botros
et al., 2006). Its authors claimed it was “the first machine intelligent system (...)
within the whole cochlear implant industry” (Botros, 2010).It consists of two classi-
fication trees2 automatically built from a dataset with the C5.0 algorithm (Quinlan,

2Even though classification trees are often called “decision trees”, they should not be confused
with the decision trees used in probabilistic decision analysis (Raiffa and Schlaifer, 1961; Raiffa,
1968).
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1993). According to its authors, “performed as accurately as the ‘average’ clinician”
when determining ECAP thresholds and saved time.

7.2.2.2. The HÉVÉA project

The objective of the HÉVÉA project (Collet et al., 2009), funded by the French
Ministry of Health, was the optimization of CI fitting using evolutionary algorithms.
Evolutionary algorithms try to solve optimization problems by defining a population
of solutions whose quality or fitness improves over time through crossover (mating)
and mutation by means of the “survival of the fittest” principle. The individuals of
the population were defined as sets of values (two per electrode) for the T and M/C
levels, randomly chosen within the range of behaviorally measured thresholds. The
evaluation function defined in order to assess each individual’s fitness was a speech
understanding test, therefore needing interaction with the patient. Therefore each
individual in the population (each combination of T and M/C levels) needed to
be evaluated by performing a speech test on the patient and thus, the number
of individuals in the populations as well as the number of iterations allowed was
very limited. For the first set of experiments (Bourgeois-Republique et al., 2005),
the evaluation function was a test consisting of ten sentences extracted from the
corpus ellaborated by Pr. Lafon(Lafon, 1964), in order to reduce testing time. Those
experiments were conducted with a single patient whose score seemed to improve
after a few iterations, but only in about half of the algorithm runs. Further tests
(Legrand et al., 2007) done with more elaborate evaluation tests in two different
patients failed to prove any improvement, allegedly because longer testing times
made impossible (due to patient’s fatigue) to perform sufficient iterations for the
algorithm to converge.

7.2.2.3. FOX

FOX (Govaerts et al., 2010), which stands for “Fitting to Outcomes eXpert”, is
a software tool developed by Otoconsult, a software company associated with the
Eargroup, a hearing clinic located in Antwerp (Belgium). It is an intelligent agent
that assists the audiologist by recommending a set of adjustments to the CI pa-
rameters. A fundamental principle of FOX is to base parameter adjustments on
performance (auditory test results) rather than on comfort measurements, which is
the traditional approach. FOX has been under development since 2001 and the first
working prototypes were used in 2002. Its development was motivated by the desire
to improve the quality of programming, systematize it, and reduce its variability,
while also reducing the required resources by automating the process.

FOX’s knowledge base consists of a set of rules encoded by its main author, an
expert clinician, to cover the different situations faced in CI programming. Each
rule is divided into a condition and an action. The condition determines the set
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of requirements the input has to fulfill in order for the rule to be fired and as
a consequence, the action to be taken. The input consists of the current set of
parameter values (the current MAP) and the set of auditory test results (outcomes)
achieved with the current MAP. The output is a recommendation of adjustments of
the parameters to try to bring the patient’s auditory performance closer to target.
Whenever more than one rule is fired, conflict resolution takes place by averaging
the parameter adjustments proposed by each of the rules fired.
Another special feature of FOX is that instead of using behaviorally measured
thresholds or ECAP measurements for the initial fitting, it provides the patient
with a set of incrementally louder MAPs for the initial period of adaptation. These
MAPs are calculated through statistical analysis of the set of MAPs whose recipients
reached outcome targets.
The results achieved through the use of FOX have been well documented. A study
(Battmer et al., 2014) showed that computer-assisted fitting since switch-on, that
is, from the very beginning, can be successfully achieved with FOX with significant
time savings during the first two weeks and including more measures of performance
than with the standard fitting approach. Another study, this time with long-term
CI users (Buechner et al., 2014), claimed that lower audiometric thresholds were
achieved after fitting with FOX. Improvements in median scores of speech percep-
tion scores turned out not to be statistically significant, perhaps due to the small
number of patients in the study. However, being able to match the results of current
world experts is already a considerable achievement for an automated approach. Fi-
nally, Vaerenberg et al. (2014a) showed that patients were able to reach 57% of the
targets at switch on with the map provided by FOX, and after fitting with FOX the
percentage rose by 24%.

7.3. The Opti-FOX project

The objective of the Opti-FOX project (Szlávik et al., 2011) was to improve the
performance of FOX by overcoming its limitations. The first approach explored
consisted in using machine learning techniques to infer the complex relation between
CI parameters and hearing performance from historic data. However the domain
proved to be too complex for the size of the available data set, and models learned
from data using different algorithms were not able to meet the expectations.
Because of the difficulty of building a model using a fully data-driven approach,
the leaders of the Opti-FOX project considered the possibility of applying PGMs,
which are suited to combine expert knowledge with data to perform reasoning in
uncertain domains. This was the reason for inviting the researchers of the CISIAD
(UNED, Spain) to join this project. This section describes the probabilistic model
we built for tuning CIs, which is a particular case of the tuning networks described
in Chapter 5.
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Figure 7.4.: Prototype of the Opti-FOX network.

7.3.1. Description of the model

This section has been omitted from the public version of this dissertation because
it concerns proprietary or confidential information subject to IP.

7.3.2. Evaluation and results

The first version of our network only covered the lower frequencies (up to 1000Hz);
we later extended it to the mid and high frequencies by creating new instances of
the above mentioned classes. Various (around 10) tests were done with data from
real patients with poor performance in the lower frequencies. In these tests the
adjustments recommended by our model were evaluated by comparing them against
those of FOX, and those of the expert.

After the expert fine tuned some of the probabilities, the model reached the point
where it usually agreed with the outcome of FOX. Also, in most cases the outcome
has been what the expert expected but even in the case of unexpected recommenda-
tions, the expert described them as being “smart”, “intelligent”, or “worth trying”.

The prototype was tried only once on a CI user: a middle-aged woman whose CI
device had been fitted by expert audiologists at the Eargroup clinic, supported by
FOX, for more than two years; even though her audiogram was inside the range
of normality, she showed a poor performance in speech audiometry. On July 31st
2012, when those audiologists programmed her CI following the recommendations
of our probabilistic model, both her loudness perception and her ability to recognize
speech increased, as shown in Figures 7.5 and 7.6, respectively. Obviously, it is not
possible to draw conclusions from one particular case, but it was a promising result.
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Figure 7.5.: Loudness scaling of the patient mentioned in the text, before (red)
and after (orange) applying the MAP proposed by the Opti-FOX prototype. The
improvement is considerable given that all the scores from 30 to 65 dB in the
orange curve are inside the gray area.

Figure 7.6.: Speech audiometry for the same patient before (red) and after (or-
ange) applying the MAP proposed by the Opti-FOX prototype. The vertical
axis represents the percentage of phonemes recognized. The patient performed
consistently better across all loudness levels (differences of 5-15%).
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7.3.3. Conclusions

In spite of the satisfactory results described above, the expert expressed the feeling
that this model had reached a plateau of performance. The complexity of the model
had grown to the point where every little refinement took him hours of work, despite
OpenMarkov’s reasoning explanation facilities. Besides, the expert expressed his
concern about the model’s frequent recommendation of increasing the T levels for
different frequency bands, even when these were already high.
A big limitation of the model was its lack of precision in the size of the changes
recommended. The model would recommend the direction of the change (up or
down), but it would not specify by how much. Even if we deemed this limitation
affordable at first, it was increasingly clear as we learned about the domain that this
was a key factor of the quality of the advice given.
Another limitation of the model was that it only considered the set of outcomes
that was available for the current map, ignoring all previous test results. This is a
considerable shortcoming, given that due to time constraints, patients do not usually
go through the whole battery of tests in a single visit.
Also, there was a growing concern that given the features of the network, learning
from data was not going to be effective. The PGM contained a series of hidden
variables with a high number of parents, which led to very complex conditional
probability distribution. Learning the conditional probability function of a hidden
variable is difficult enough, but learning a number of them with such complex con-
ditional probabilities would demand a vast amount of cases.

7.4. Hearing Minds

Almost a year after the end of the Opti-FOX project, we continued our work on the
decision-support system for fitting CIs within the Hearing Minds project, funded
by the Marie Curie Action “Industry-Academia Partnerships and Pathways” Pro-
gramme. In the meantime, Vaerenberg et al. (2014b) published a paper on intensity
coding in CIs (ICCI) that offered a clear insight into how CI parameters determined
the electrical charge provided by the electrodes for all four manufacturers men-
tioned in Section 7.1.3.1. They presented a software application for visualizing the
intensity-coding function, also allowing to visualize the impact of any change in the
many MAP parameters. Figure 7.7 shows a screenshot of the software application
presented in (Vaerenberg et al., 2014b).
Even if the authors of the paper admit that it is a simplification, this model provided
a more accurate prediction of how changes in the parameters could affect intensity
than we could have represented with a PGM. Therefore, we decided to replace the
layer of the PGM that calculated the changes in electrical intensity given changes
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Figure 7.7.: Screenshot of the ICCI software showing how a 20 point increase in
the T parameter affects the output charge (in an Advanced Bionics device). The
bottom graph summarizes the upper two: its horizontal axis represents the input
sound level in decibels and the vertical axis represents the electrical charge output
in nanocoulombs. The two lines in the bottom graph represent the intensity-
coding function of two different MAPs.
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in the parameters, which happened to be its more complex part. Moreover, we
realized that based on the expert’s knowledge, we could build predictive models to
predict test results based on past test results and changes in energy as calculated
by Vaerenberg et al. (2014b).

The inspiration for the new approach was to combine this physical simulation model
with probabilistic graphical models to predict the impact of electrical changes on
the test results probabilistically.

7.4.1. Description of the model

This section has been omitted from the public version of this dissertation because
it concerns proprietary or confidential information subject to IP.

7.4.2. Results

The decision-support system has been used in the last few months to assist in the
fitting of CIs in the Eargroup hearing clinic in Antwerp, Belgium. It has been tested
in 15 experienced patients, none of which were newly implanted. They all had been
through the fitting process before and most of them had been coming to the clinic
for periodical fitting sessions for years. Due to the time and effort needed from both
patients and audiologists to perform a full batch of tests, most of the patients were
only tested with the MAPs recommended by our model. For four of these patients
our model considered that the risk of worsening the test outcomes outweighed the
benefit that a change in the map might contribute; therefore no further action was
recommended.

All patients but three had audiometries considered to be on target, that is, the
audiometric thresholds measured were equal or below target across all frequencies
except for three patients. The audiometries of two of those three patients improved
to thresholds that were on target (one of them in two iterations), whereas two
thresholds of the remaining patient remained out of target after an iteration.

Three of the fifteen patients failed to discriminate at least one phoneme pair. Two of
them failed to discriminate a single contrast, and one of them failed three. From the
two patients who failed a single contrast, one managed to successfully discriminate
it after the system’s intervention, and the other one kept failing. The patient who
failed to discriminate three contrasts was able to discriminate them all with the
MAP proposed by our model.

Eight patients had at least one loudness scaling score that was off the acceptable
range in at least one frequency. From those eight patients, only three patients kept
at least one score off target after the improvements to their MAPs recommended
by our system. Put another way, from the 16 scores that were off target and the 10
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that were almost on target, only 7 remained off target and 4 almost on target after
using the MAP proposed by our system.
Improvements are more subtle in the speech audiometry results. Thirteen speech
audiometries were conducted using the MAPs recommended by our system. Only
two of them achieved an overall improvement for different loudness levels that im-
proved the average score across all loudness levels by more than five points. Other
five speech audiometries included an improvement of more than 10 points in at least
one loudness level. The average scores where slightly higher after our intervention,
but the improvement was not statistically significant. Another positive aspect is
that the differences between scores in neighboring loudness levels are smaller (a me-
dian of -4.2 both for the difference between scores at 40 dB compared to 55 dB and
55 dB compared to 70 dB) after applying the changes proposed by our model.

7.5. Conclusions and future work

This section has been omitted from the public version of this dissertation because
it concerns proprietary or confidential information subject to IP.
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8. Conclusions

8.1. Main contributions

8.1.1. New types of PGMs

We have studied three new types of PGMs: DANs, MPADs, and tuning networks.
Even if the development of the first two types of models were defined at the CISIAD
of the UNED before the beginning of my doctoral research, I have contributed to
both. Additionally, I have developed a new type of model, called tuning networks.

DANs are relevant for decision analysis because they can represent and solve not only
symmetric decision problems—with the same ease as influence diagrams (IDs)—
but also asymmetric problems for which IDs are inappropriate. As we argued in
Section 3.1.5, in the case of asymmetric problems DANs are more suitable than any
other formalism proposed so far. For this reason we think that DANs might replace
IDs as the standard tool for decision analysis.

My contributions to the development of DANs are as following. First, when im-
plementing the conversion of DANs into equivalent decision trees in OpenMarkov, I
found a few loose ends in the definition of DANs and in the conversion algorithm.
The current definition of DANs, as detailed in the paper that we have submitted
to IEEE Transactions on Pattern Analysis and Machine Intelligence (impact fac-
tor: 5.694), contains some of the modifications resulting from my work. Second, I
designed and implemented a new evaluation algorithm, which is described in Sec-
tion 3.3 and in that paper. We compared the efficiency of this algorithm with the
expansion of an equivalent decision tree and with another algorithm for DANs de-
veloped and implemented by Prof.Manuel Luque, another member of our research
group. The results, shown in Section 3.4, indicate that the algorithm proposed
in this thesis performs significantly better than the other two for large DANs; in
particular, it has been able to resolve the n-tests problem with n = 12, which is
remarkable, considering that Jensen and Vomlelová (2002) only managed to get to
n = 9 in a similar problem (an UID with no structural constraints) and its a prob-
lem whose complexity grows superexponentially. To our knowledge, no one had ever
solved such a large asymmetric decision problem.

With respect to MPADs, I completed the implementation of algorithms for cost-
effectiveness analysis (CEA) and reimplemented sensitivity analysis almost from
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scratch. We were able to finally evaluate the HPV model1, built by CISIAD two
years before. During my three-month stay at the Centre for Health Economics of
the University of York in 2013, I implemented as MPADs several models published
in the literature based on their corresponding Excel and R files: the cost effectiveness
studies of lamivudine/zidovudine combination therapy in HIV infection (Chancellor
et al., 1997), total hip replacement (Briggs et al., 2004), and cotrimoxazole prophy-
laxis in HIV-infected children in Zambia (Ryan et al., 2008). Representing these
models required the analysis and implementation of new types of potentials, as well
as an extension of some of the existing algorithms. We proved that MPADs are
a powerful tool to build and evaluate models for CEA and have significant advan-
tages compared with Excel and R. My PhD supervisor and I gave seminars at the
Centre for Health Economics of the University of York and at the School of Health
and Related Research of the University of Sheffield, two of the centers leading the
development of new methods for health technology assessment. I collaborated on
a paper, co-authored by members of the CISIAD and of the University of York,
which presents MPADs to the health economics community; it will be submitted to
Medical Decision Making (impact factor: 2.698).
During the participation of our research group in the Opti-FOX project, financed by
the EU 7th Framework Programme, we proposed a new type of PGM, called tuning
networks, as no existing PGM suited our needs. We also defined a new canonical
model that represents the effect of multiple parameters on a single outcome. Finally,
during my stay in the University of Aalborg I designed and implemented object-
oriented probabilistic networks as an extension of object-oriented Bayesian networks.
We believe tuning networks, along with the tuning model and combined with the
object-oriented probabilistic networks, will be very useful to anyone interested in
modeling a system with a high number of tunable parameters. These contributions
were presented at the AIME2013, a conference rated as CORE A.

8.1.2. Application of MPADs to cost-effectiveness analysis

We carried out two CEAs with MPADs. First, we analyzed the cost-effectiveness
of the PleurX® catheter vs. talc pleurodesis for the treatment of malignant pleural
effusions, in collaboration with an expert surgeon. Our results showed that PleurX®
dominates the talc treatment for patients with a life expectancy shorter than nine
weeks and is cost-effective for patients with a life expectancy lower than 14 weeks.
For patients with longer life expectancy, talc is the most cost-effective option. This
paper will also be submitted to Medical Decision Making after the paper on MPADs.
We also built an MPAD to analyze the cost-effectiveness of mammographic screen-
ing for different age ranges and for women with different risk factors. The results
of our analysis mostly match those of Schousboe et al. (2011), which was heavily
based on the correlations observed in the SEER database of the National Institute

1Available at http://www.probmodelxml.org/networks/mpad/MPAD-HPV.pgmx.
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of Health (USA). Unfortunately, we could not adapt the model to Spain, as we orig-
inally intended, because their model is not causal and we lacked the corresponding
observational data for the Spanish population given that there is no database sim-
ilar to that of the SEER study in our country. If the original model were causal,
we might have combined the data available for Spain mixed with the those of the
original model. Nevertheless, we believe that the network we have built is a good
example of the ability of MPADs to represent complex models.

These two MPADs are available online2. The possibility of reproducing the results of
the analyses is even more important than in the case of algorithms, because there are
well-known cases of very influential papers based on models that later proved to be
wrong Herndon et al. (2013); Baggerly and Coombes (2009). The number of papers
whose conclusions are derived from models is ever increasing, especially in the field
of CEA, and the scientific community is increasingly aware that research should be
reproducible, but only in very exceptional cases is the corresponding model publicly
available.

8.1.3. Assisting cochlear implant programming

We have built a decision-support system for fitting cochlear implants (CIs) in col-
laboration with Otoconsult, a software company located in Antwerp (Belgium) spe-
cialized in audiological products. First, inside Opti-FOX, a project funded by the
European Union (FP7-SME-2010-1 262266), we built a tuning network that relates
the performance of the CI with the audiological outputs and recommends the set of
adjustments to the parameters of the CI estimated to lead to optimal performance.
Thanks to the success of this model, the collaboration of Otoconsult and the UNED
continued with the support of a new European grant (Marie Curie Action “Industry-
Academia Partnerships and Pathways”, FP7-PEOPLE-2012-IAPP). In this project
we have built a new version of our decision-support system that combines a physical
model of the CI with a probabilistic graphical model and has been integrated into
a new version of FOX—described in Section 7.2.2.3.

The great variability in current fitting practices and the fact that it is usually com-
fort driven (Vaerenberg et al., 2014c), lead experts to believe that many CI users
suffer from suboptimal performance. A study on the use of the old version of FOX
(Vaerenberg et al., 2014a), which was based on deterministic rules, proved to reduce
the variability and improve the results achieved through manual fitting. According
to the authors of FOX, the decision-support system described in Section 7.4, offers
better recommendations than the rule-based expert system, and for this reason it
is currently used at the Eargroup, a hearing clinic associated with Otoconsult, as
the main tool to assist in the fitting of CIs. Considering that over 320 000 people
in the world have received cochlear implants (NIH, 2013), we are confident that

2At www.probmodelxml.org/networks.
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the decision-support system developed in this doctoral thesis will have a significant
impact in the hearing performance of many people.

8.1.4. OpenMarkov, an open-source tool for PGMs

The new types of models and the algorithms developed in this doctoral thesis have
been implemented in the open-source program OpenMarkov, that can be downloaded
from www.openmarkov.org. This is important for two main reasons. First, because
the experiments that compare the efficiency of the algorithm for DANs (Section 3.4)
can be reproduced by other researchers using our source code. As mentioned above
the scientific community is increasingly convinced of the need for reproducibility in
research. Second, because these contributions are now available to the communities
of uncertainty in artificial intelligence, decision analysis, and health technology in a
mature program that can be used for free, even by those that do not have a strong
background on PGMs. In this aspect the models and algorithms described here
differ from the ones that have never been implemented.

For these reasons, we think that OpenMarkov is a major contribution of the CISIAD
to the field of PGMs. It is used at universities, research institutes, and private
companies of at least 20 countries. My contributions to OpenMarkov range from
refactoring and debugging existing code to implementing several new features, as
explained in A.

One important contribution is the functionality for learning Bayesian networks in-
teractively, which was the subject of my master thesis. During my doctoral research,
in addition to improving the module for learning Bayesian networks with new fea-
tures and refactoring and debugging the algorithms, I have co-authored a paper that
describes this functionality and that is currently under evaluation at the Journal of
Statistical Software (impact factor: 3.801).

8.2. Future work

8.2.1. New types of PGMs

In order to make DANs more appealing, we intend to offer two important features
for their evaluation. First, we would like to develop an algorithm to generate a
compacted representation of the optimal strategy of a DAN. The optimal strategy
is best represented with a policy tree in which the order of variables in the tree
minimizes its size. This task would consist in the adaptation of optimal policy trees
described in Prada (2014) to DANs. Second, it would be interesting to develop
reasoning explanation techniques for DANs, similar to the ones existing for BNs
and IDs in Elvira Lacave et al. (2007). Explanation of the reasoning is important
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for debugging purposes and to overcome users’ reluctance to accept the advice of a
model.
Another field of application of DANs is CEA. IDs have already been used for CEA
(Baio et al., 2006; Arias and Díez, 2015), usually in symmetrized decision problems.
The main advantage of DANs is that they can also represent order and structure
asymmetry in a natural way, which can prove crucial in problems involving more
than one decision; for example, when several tests are available or when more than
one treatment can be applied sequentially.
Regarding MPADs our objective is to make them a well-known formalism for CEA
so that they gain a prominent space in the modeler’s toolbox. The first and most im-
portant step will be to publish the paper presenting MPADs in the Medical Decision
Making journal, in order to introduce them to the health technology assessment com-
munity. Once the MPADs have been presented, we will perform cost-effectiveness
analyses for other medical problems. The more models we build and publish, the
more arguments we will have to convince the community of the advantages of us-
ing MPADs. Another important line of work is the development of new features in
OpenMarkov, such as new potentials, to make sure that modelers do not miss the
most important tools they normally use to build models. In this line, we intend
to work towards making OpenMarkov more easily extensible, so that any modeler
with notions of programming is able to develop any type of potential needed when
building a model.
Finally, there are software tools that integrate Bayesian inference and cost-effectiveness
analysis (Abrams et al., 2004; Baio, 2012; Welton et al., 2012). Therefore a very
interesting line for future research is the integration of OpenMarkov with a some of
the packages in the BUGS family, such OpenBUGS or JAGS, thus combining the
statistical power of the latter with the facilities for model building and analysis of
the former.

8.2.2. Cost-effectiveness analysis with MPADs

We believe the value of our CEA of the PleurX® catheter compared to chest tube
placement with talc pleurodesis could increase if we combine our current results with
predictive factors for the life expectancy of patients. Thus, we could recommend
treatments based on these predictive factors, such as type of tumor, the lactate
dehydrogenase level in the pleural fluid, and the neutrophil-to-lymphocyte ratio
Clive et al. (2014).
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A. Functionality implemented in
OpenMarkov

This appendix describes the work done by the author of this dissertation as part of
the development of OpenMarkov.

A.1. Reorganization in Maven projects

The source code of OpenMarkov was included in a single project. This had a number
of disadvantages. For example, there was no clear separation between different
aspects of the program, such as the business logic and the GUI. Also, due to the
collaborative nature of the development of OpenMarkov, where students extend its
functionality, having all the code in a single project made it vulnerable to code
check-ins that would compromise its stability.
For this reason, we decided to reorganize the source code of to a set of OpenMarkov
into a set of projects linked by dependencies, each project containing a different
aspect of the software. These projects are configured with Apache Maven, which
is a project configuration and build automation tool. This distribution forced us
to separate different aspects of the code and therefore create modules minimizing
dependencies amongst them. Thanks to the new distribution we were also able to set
different permissions for different parts of the code, thus ensuring a higher stability.
Besides, we combined this new distribution with the use of Java annotations to
create extensibility points in OpenMarkov. Through these extensibility points, the
functionality of OpenMarkov can be extended without the modification of its source
code, only by placing jar files inside its classpath. Using this mechanism, users can
add new inference algorithms, elimination heuristics, potentials, learning algorithms,
metrics for search-and-score learning algorithms and even entire modules accessible
through its GUI.

A.2. Build and test automatization

The division of the code into a set of different projects brought the disadvantage of
having to deal with a high number of them. Maintenance of the code base became
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increasingly complicated. Tasks such as deploying a new version of the software
became complex and time consuming. Making sure changes in some projects did
not affect others became a cumbersome task. We automated build generation and
periodical testing of the code using a Jenkins server, so that every time a change is
submitted to the code repository, the tests of the modified projects are run. This
allows us to detect errors in the code immediately.

A.3. Interactive learning of Bayesian networks

The development of a framework for the interactive learning of Bayesian networks
has been an important part of the work of the author of this thesis and has led to
a publication in a conference (Bermejo et al., 2012) and the submission of another
paper to the Journal of Statistical Sofware. It was left outside of this dissertation
because it did not fit together with the rest of the doctoral research.

A.4. The tuning model

The tuning model described in 5.2 was implemented as a new type of ICI potential
in OpenMarkov.

A.5. Object-oriented probabilistic networks

Object-oriented probabilistic networks (OOPNs) were conceived as a generalization
of the object-oriented Bayesian networks proposed by Koller and Pfeffer (1997);
Bangsø and Wuillemin (2000) to PGMs with decision and utility nodes, such as
IDs. I added functionality in the GUI to define classes, to create instances, and to
link instances to other instances and to nodes. The evaluation of OOPNs was done
converting it into a plain PGM as a preprocessing step.

A.6. Likelihood weighting

OpenMarkov had no approximate inference algorithms implemented, and the tuning
network built for the Opti-FOX project had too big potentials to be evaluated
with exact inference. We implemented likelihood weighting (Fung and Chang, 1990;
Shachter and Peot, 1990) because it was a simple yet powerful algorithm that met
our requirements at the time.
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A.7. Cost-effectiveness analysis with MPADs

The implementation of cost-effectiveness analysis with MPADs was already under-
way when the author of this thesis took over the task: MPADs could be created
and edited using OpenMarkov’s GUI; the preprocessing of MPADs (turning it into
a multi-criteria influence diagram by expanding the network, adding an artificial
node of decision criteria as a conditioning variable and applying the discounts) to
be evaluated with an inference algorithm for IDs was already implemented, but was
buggy.

I corrected a few bugs from the original implementation, implemented the half-cycle
correction and the probabilistic sensitivity analysis almost from scratch, including
the visualization of its results—the cost-effectiveness analysis curve and the graph of
the expected value of information. In order to be able to evaluate certain models, I
also implemented the inference with numerical variables in certain scenarios. Finally,
I implemented a set of new potentials: Weibull hazard potential, the Exponential
hazard potential, the linear combination, and the delta potential.

A.8. Inference on DTs

Implementation of the rollback algorithm to calculate expected utility and optimal
strategy in decision trees, as described in Raiffa (1968).

A.9. Conversion of an ID into an equivalent DT

This functionality was already present in Elvira and it is useful as an introduction to
IDs for people who are used to work with DT. It is also useful to compare how DTs
generated from IDs compare to those generated with DANs when there is structural
asymmetry involved. This conversion is only tractable for small IDs due to the
exponential growth of the size of the equivalent DT.

A.10. Conversion of a DAN into an equivalent DT

As a means to define the syntax of DANs, an algorithm to convert DANs to equiva-
lent decision trees was proposed in Díez et al. (2012). We implemented it in Open-
Markov also as a means to have an inefficient yet simple way to be able to evaluate
DANs.
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A.11. Evaluation of DANs: recursive decomposition

The evaluation of DANs by converting them into an equivalent decision tree and
then using the rollback algorithm to evaluate it was very inefficient. Therefore, we
decided to devise and implement more efficient algorithms to evaluate DANs. This
algorithm evaluates DANs by creating a tree of symmetric DANs, evaluating those
symmetric DANs with variable elimination.
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