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Abstract. Severe and profound hearing losses can be treated with coch-
lear implants (CI). Given that a CI may have up to 150 tunable parame-
ters, adjusting them is a highly complex task. For this reason, we decided
to build a decision support system based on a new type of probabilistic
graphical model (PGM) that we call tuning networks. Given the results
of a set of audiological tests and the current status of the parameter set,
the system looks for the set of changes in the parameters of the CI that
will lead to the biggest improvement in the user’s hearing ability. Because
of the high number of variables involved in the problem we have used an
object-oriented approach to build the network. The prototype has been
informally evaluated comparing its advice with those of the expert and of
a previous decision support system based on deterministic rules. Tuning
networks can be used to adjust other electrical or mechanical devices,
not only in medicine.

1 Introduction

Cochlear implants (CI) are being successfully applied to treat severe and pro-
found hearing losses. A CI consists of a speech processor that analyzes the sound
and an array of electrodes placed into the cochlea which pass an electrical signal
directly to the auditory nerve.

After implantation, CIs need to be programmed or “fitted” to optimize the
user’s hearing capability. This is usually a challenging and time-consuming task
that is typically performed by highly trained audiologists or medical doctors. CI
centers and manufacturers have developed their own heuristics, usually in the
form of simple “if-then” rules applied in a very flexible but individual and un-
controllable way. Recipients using incorrectly programmed CIs experience poor
performance and outcomes.

One of those applications, called FOX [1], was developed by Otoconsult, an
audiological clinic in Antwerp, Belgium. It is being used in several centers across
Europe. FOX is based on parameterized deterministic rules, which entails some
limitations, such as the difficulty to maintain the knowledge base when the num-
ber of rules increases and the inability to learn from data. The Opti-FOX project
[2] was conceived to overcome these limitations. In the beginning, an approach
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with supervised classification algorithms—such as the k-NN classifier—was at-
tempted, but failed to progress due to the complexity of the problem and the
small number of records available to learn from. In order to improve the results
of FOX, the most promising approach seemed to build a probabilistic graphical
model (PGM) because this type of model can combine expert knowledge, the
power of probabilistic reasoning, and the ability to learn from data.

This paper describes briefly a new type of PGM especially tailored for tuning
programmable devices and how it has been used to build a decision support
system for fitting CIs.

2 Tuning Networks

A tuning network consists of an acyclic directed graph (ADG) containing chance,
decision and utility nodes, and a probability distribution. As in other types of
PGMs, a decision node represents a variable that is under the direct control of
the decision maker, while chance nodes represent features of the system over
which the decision maker has no direct control, and utility nodes represent the
decision maker’s preferences, measured on a numerical scale. In tuning networks,
each property of the system is modeled by a relative-value node that represents
a change in its value and, optionally, by an absolute-value node. In the case
of a tunable parameter (for example, the sensitivity of the microphone), the
relative-value node is a decision node because the programmer of the CI can
increase, decrease, or keep the value of the parameter; the absolute-value node
is represented as a chance node for which we have evidence, because the value
of a tunable parameter is always known. We may also have evidence about the
absolute-value nodes that represent measurements, such as the result of a test.
Utility nodes are always relative-value nodes, as they represent the increase or
decrease in the user’s performance as a consequence of tuning some parameters.

An important component of tuning networks is the tuning model, a new
canonical model based on the property of independence of causal interaction
(ICI) [3–5]. Canonical models represent how a variable is probabilistically influ-
enced by a set of parent variables [6], in general assuming a pattern of causal
interaction. Their main advantage is that the number of parameters (conditional
probabilities) is proportional to the number of parents, while in the general case
it grows exponentially. ICI models assume that each parent produces the effect
with a certain probability, independently of the values of the other parents, and
the global effect is determined by a function, specific of each type of ICI model,
that combines the individual effects; for example, in the noisy OR the effect is
present when at least one of the causes has produced the effect.

A unique feature of the tuning model is that it assumes that every variable
involved has exactly three values: increased, decreased, and not-changed, while
other ICI models, such as the noisy OR and the noisy AND, assume that all
variables are boolean, and other models, such as the noisy MIN and the noisy
MAX impose no restriction about the number of values of each variable [5]. The
tuning model assumes that a change in one of the parents causes a change in the
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child variable with a certain probability. When some of the parents induce an
increase and others cause a decrease, the global effect depends on whether there
are more increases than decreases, or vice versa, or there is a tie. It is therefore
similar to a majority voting function.

Tuning networks differ from influence diagrams [7] in that they do not have
a total ordering of the decisions because the order in which the parameters
are tuned does not affect the result. Additionally, all the evidence is available
before making the decisions, as it the in each session when programming a CI,
while in influence diagrams some decision provide evidence that can be used in
subsequent decisions. As a consequence, the algorithms for evaluating these two
types of models are very different—see Section 3.2.

3 Construction of the Model

3.1 Model Construction

Variables in the Model In our tuning network, the tunable parameters are
those of the CI; as mentioned above, each one is represented by an absolute-
value chance node and a relative-value decision node. Each electrode has several
tunable parameters, e.g., the T level (the softest electrical input level detectable
by the user), the M level (the electrical input level perceived as loud but com-
fortable), etc. Besides, the CI has a set of tunable parameters that are electrode-
independent, i.e., global to the implant, such as the volume of the microphone.

The model also represents the results of a battery of different tests, such as
audiometries, phoneme discrimination and speech recognition tests. Each mea-
surement of a test is modeled with a chance node representing the current value
of the test (this node receives evidence when performing the test), a chance node
representing the expected change in the result of the tests given the changes in
the tunable parameters, and a utility variable defining the utility function based
on the other two.

Other nodes represent internal properties of the device, such as the amount
of energy in the auditory nerve, which depend on the tunable parameters and in
turn affect the results of the tests.

The global utility of our model is the sum of the results of all tests; therefore
maximizing this utility is the same as optimizing the user’s hearing ability.

The resulting model contains 202 nodes and 664 links.

Elicitation of Numerical Parameters The probabilities and utilities have
been assessed by the expert: the probabilities are subjective estimates based
on his expertise while the utilities have been estimated by roughly assigning
monetary value to positive and negative changes in the results of tests.

Object-Oriented Probabilistic Networks The network, containing sets of
repeated structures (such as electrodes, frequency bands and tests) was mod-
eled following the object-oriented paradigm for PGMs as proposed by [8, 9]. A
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class defines a structure consisting of a set of attributes and their probabilistic
relations and is connected with other classes through their input parameters,
namely instances of other classes. An OOPN consists of a set of instances and
their causal relations.

3.2 Inference

Inference in a tuning network consists in looking for the optimal strategy, i.e.,
the set of changes in the tunable parameters that maximizes the global expected
utility. As an exhaustive search would be computationally unaffordable, we have
implemented a greedy search and score algorithm that examines myopically the
space of possible strategies. The search is initialized by setting all policies for all
decision nodes to “no change”. It then iteratively looks for the single change in
the strategy, i.e. a change in a decision node’s policy that maximizes the global
utility function.

The score for each strategy, namely the global expected utility given the
strategy, is computed using an inference algorithm. Given the high number of
variables in the model and its high connectivity, the cost of running exact infer-
ence algorithms is unaffordable. For that reason, we decided to use an approx-
imate inference algorithm—namely a likelihood weighting method [10] adapted
to networks with utility nodes—whose spatial and temporal complexities grow
linearly with the number of nodes instead of exponentially. The main drawback
of likelihood weighting is that its accuracy decreases with extremely unlikely ev-
idence, but it still fits our needs as the observed nodes usually have no extreme
probabilities.

We compared the results of this greedy algorithm—in simplified versions of
our model—with those of an exact inference algorithm (variable elimination)
and both returned the same optimal strategy under different evidence scenarios.
The execution time of the greedy algorithm, which has been implemented to run
in parallel taking advantage of multiple core processors, depends on the number
of changes proposed by the optimal strategy, but in a regular desktop computer
(Intel Core i5-2500 @ 3.30GHz and 8GBs of RAM) is usually under a minute.

3.3 Evaluation of the Model

We have initially built a prototype for the low-frequency electrodes, i.e., those
in the range from 250 to 1000 Hz. This model has been tested on a set of cases
taken from a database of real CI users. The recommendations output by our
model have been compared with those of FOX, the expert system based on
deterministic rules, having the expert as a judge. Given that FOX was built by
this expert, it is not surprising that in general FOX’s recommendations agreed
with his. In many cases, also the recommendations of our model agreed with
both FOX and the expert. There were, however, some cases in which our model
recommended some interventions that surprised the expert, but he never deemed
them non-sensical. On the contrary, he described them as “intelligent”, “smart”
and “worth trying”.
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Fig. 1. Screenshot of the prototype network.

On July 31, 2012 a patient at Otoconsult had a poor performance in the
speech understanding tests, in spite of having an audiometry in the range of
normality. The audiologists using their expertise and FOX’s support, were not
able to improve her abitliy to understand spoken words. However, when her
implant was fitted using the advice of our prototype, her performance increased
to the level of normality. Of course, this isolated result does not prove that our
model outperforms FOX or the audiologists in general, but it is a promising
result.

4 Conclusions and Future Work

In the context of the European project Opti-FOX, we have built a PGM for
programming CIs. The development of tuning networks and our framework for
OOPNs has been motivated by the needs encountered in this project, but they
can be applied to adjust other electrical or mechanical devices, not only in
medicine.

The advantages of our model with respect to FOX, the rule based system, are
that our model is capable of complex reasoning whereas FOX only concatenates
rules, that FOX is deterministic while our model handles uncertainty, and that
our model will be fine-tuned by learning from data. However, FOX is still a more
mature project that has been evaluated extensively and includes features that
our model still lacks, such as the ability to determine the quantity by which the
value of a parameter should be changed.

The most obvious next step in the project is to test the developed prototype
on real CI users. Besides, we are currently working on learning the conditional
probabilities from a database, in order to fine-tune the probabilities elicited by
the expert. Given that our model contains unobservable variables, the usual
parametric learning algorithms cannot be applied. Instead, we are using the
Expectation Maximization (EM) algorithm, applied to the learning of Bayesian
networks as proposed by Lauritzen [11].
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Another aspect with room for improvement is the granularity of the variables.
Relative-value variables were discretized into three intervals (increase, decrease,
no change) to reduce the complexity of the problem. This over simplification
prevents our model from accurately predicting the effect of small changes in the
parameters of the CI.

Finally, the programming of a CI has a temporal aspect: it usually involves
several sessions and the history of each patient is relevant. Unfortunately, the
current model only considers the current values of the parameters. Turning our
system into a partially-observable Markov decision process (POMDP) would
allow us to model that temporal evolution and determine the optimal sequence
of tests and parameter adjustments.

References

1. Govaerts, P.J., Vaerenberg, B., Ceulaer, G.D., Daemers, K., Beukelaer, C.D.,
Schauwers, K.: Development of a software tool using deterministic logic for the
optimization of cochlear implant processor programming. Otology & Neurology
31 (2010) 908–918

2. Szlavik, Z., Vaerenberg, B., Kowalczyk, W., Govaerts, P.: Opti-fox: towards the
automatic tuning of cochlear implants. In: Proceedings of the 20th Belgian Dutch
Conference on Machine Learning. (2011) 79–80

3. Heckerman, D.: Causal independence for knowledge acquisition and inference.
In: Proceedings of the 9th Conference on Uncertainty in Artificial Intelligence
(UAI’93), Washington, D.C., Morgan Kaufmann, San Mateo, CA (1993) 122–127

4. Heckerman, D., Breese, J.S.: Causal independence for probability assessment and
inference using Bayesian networks. IEEE Transactions on Systems, Man and
Cybernetics—Part A: Systems and Humans 26 (1996) 826–831

5. Dı́ez, F.J., Druzdzel, M.J.: Canonical probabilistic models for knowledge engineer-
ing. Technical Report CISIAD-06-01, UNED, Madrid, Spain (2006)

6. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, San Mateo, CA (1988)

7. Howard, R.A., Matheson, J.E.: Influence diagrams. In Howard, R.A., Mathe-
son, J.E., eds.: Readings on the Principles and Applications of Decision Analysis.
Strategic Decisions Group, Menlo Park, CA (1984) 719–762

8. Koller, D., Pfeffer, A.: Object-oriented Bayesian networks. In: Proceedings of
the Thirteenth Conference in Artificial Intelligence (UAI-97), San Francisco, CA,
Morgan Kaufmann (1997) 302–313

9. Bangsø, O., Wuillemin, P.H.: Top-down construction and repetetive structures
representation in Bayesian networks. In: Proceedings of the Thirteenth Interna-
tional Florida Artificial Intelligence Research Society Conference (FLAIRS-2000),
Orlando, FL (2000) 282–286

10. Shachter, R., Peot, M.: Simulation approaches to general probabilistic inference on
belief networks. In Henrion, M., Shachter, R.D., Kanal, L.N., Lemmer, J.F., eds.:
Uncertainty in Artificial Intelligence 5. Elsevier Science Publishers, Amsterdam,
The Netherlands (1990) 221–231

11. Lauritzen, S.L.: The EM algorithm for graphical association models with missing
data. Comput. Stat. Data Anal. 19(2) (February 1995) 191–201


